R 中的线性回归梯度下降算法产生不同的结果

Linear regression gradient descent algorithms in R produce varying results

我正在尝试在不使用任何使用以下数据的包或库的情况下从头开始在 R 中实现线性回归:

UCI Machine Learning Repository, Bike-Sharing-Dataset

线性回归很简单,这里是代码:

data <- read.csv("Bike-Sharing-Dataset/hour.csv")

# Select the useable features
data1 <- data[, c("season", "mnth", "hr", "holiday", "weekday", "workingday", "weathersit", "temp", "atemp", "hum", "windspeed", "cnt")]

# Split the data
trainingObs<-sample(nrow(data1),0.70*nrow(data1),replace=FALSE)

# Create the training dataset
trainingDS<-data1[trainingObs,]

# Create the test dataset
testDS<-data1[-trainingObs,]

x0 <- rep(1, nrow(trainingDS)) # column of 1's
x1 <- trainingDS[, c("season", "mnth", "hr", "holiday", "weekday", "workingday", "weathersit", "temp", "atemp", "hum", "windspeed")]

# create the x- matrix of explanatory variables
x <- as.matrix(cbind(x0,x1))

# create the y-matrix of dependent variables

y <- as.matrix(trainingDS$cnt)
m <- nrow(y)

solve(t(x)%*%x)%*%t(x)%*%y 

下一步是实施批量更新梯度下降,这就是我 运行 遇到的问题。我不知道错误来自何处或如何修复它们,但代码有效。问题是产生的值与回归的结果完全不同,我不确定为什么。

我实现的batch update gradient descent的两个版本如下(两种算法的结果各不相同,回归的结果也不同):

# Gradient descent 1
gradientDesc <- function(x, y, learn_rate, conv_threshold, n, max_iter) {
  plot(x, y, col = "blue", pch = 20)
  m <- runif(1, 0, 1)
  c <- runif(1, 0, 1)
  yhat <- m * x + c
  MSE <- sum((y - yhat) ^ 2) / n
  converged = F
  iterations = 0
  while(converged == F) {
    ## Implement the gradient descent algorithm
    m_new <- m - learn_rate * ((1 / n) * (sum((yhat - y) * x)))
    c_new <- c - learn_rate * ((1 / n) * (sum(yhat - y)))
    m <- m_new
    c <- c_new
    yhat <- m * x + c
    MSE_new <- sum((y - yhat) ^ 2) / n
    if(MSE - MSE_new <= conv_threshold) {
      abline(c, m) 
      converged = T
      return(paste("Optimal intercept:", c, "Optimal slope:", m))
    }
    iterations = iterations + 1
    if(iterations > max_iter) { 
      abline(c, m) 
      converged = T
      return(paste("Optimal intercept:", c, "Optimal slope:", m))
    }
  }
  return(paste("MSE=", MSE))
}

和:

grad <- function(x, y, theta) { # note that for readability, I redefined theta as a column vector
  gradient <-  1/m* t(x) %*% (x %*% theta - y) 
  return(gradient)
}
grad.descent <- function(x, maxit, alpha){
  theta <- matrix(rep(0, length=ncol(x)), ncol = 1)
  for (i in 1:maxit) {
    theta <- theta - alpha  * grad(x, y, theta)   
  }
  return(theta)
}

如果有人能解释为什么这两个函数会产生不同的结果,我将不胜感激。我还想确保我实际上正确地实施了梯度下降。

最后,我如何绘制具有不同学习率的下降结果并将此数据叠加到回归本身的结果上?

编辑 以下是 运行 alpha = .005 和 10,000 次迭代的两种算法的结果:

1)

> gradientDesc(trainingDS, y, 0.005, 0.001, 32, 10000)
TEXT_SHOW_BACKTRACE environmental variable.
[1] "Optimal intercept: 2183458.95872599 Optimal slope: 62417773.0184353"

2)

> print(grad.descent(x, 10000, .005))
                   [,1]
x0            8.3681113
season       19.8399837
mnth         -0.3515479
hr            8.0269388
holiday     -16.2429750
weekday       1.9615369
workingday    7.6063719
weathersit  -12.0611266
temp        157.5315413
atemp       138.8019732
hum        -162.7948299
windspeed    31.5442471

为了举例说明如何以更好的方式编写这样的函数,请考虑以下内容:

gradientDesc <- function(x, y, learn_rate, conv_threshold, max_iter) {
  n <- nrow(x) 
  m <- runif(ncol(x), 0, 1) # m is a vector of dimension ncol(x), 1
  yhat <- x %*% m # since x already contains a constant, no need to add another one

  MSE <- sum((y - yhat) ^ 2) / n

  converged = F
  iterations = 0

  while(converged == F) {
    m <- m - learn_rate * ( 1/n * t(x) %*% (yhat - y))
    yhat <- x %*% m
    MSE_new <- sum((y - yhat) ^ 2) / n

    if( abs(MSE - MSE_new) <= conv_threshold) {
      converged = T
    }
    iterations = iterations + 1
    MSE <- MSE_new

    if(iterations >= max_iter) break
  }
  return(list(converged = converged, 
              num_iterations = iterations, 
              MSE = MSE_new, 
              coefs = m) )
}

比较:

ols <- solve(t(x)%*%x)%*%t(x)%*%y 

现在,

out <- gradientDesc(x,y, 0.005, 1e-7, 200000)

data.frame(ols, out$coefs)
                    ols    out.coefs
x0           33.0663095   35.2995589
season       18.5603565   18.5779534
mnth         -0.1441603   -0.1458521
hr            7.4374031    7.4420685
holiday     -21.0608520  -21.3284449
weekday       1.5115838    1.4813259
workingday    5.9953383    5.9643950
weathersit   -0.2990723   -0.4073493
temp        100.0719903  147.1157262
atemp       226.9828394  174.0260534
hum        -225.7411524 -225.2686640
windspeed    12.3671942    9.5792498

此处,x 指的是您在第一个代码块中定义的 x。注意系数之间的相似性。但是,还要注意

out$converged
[1] FALSE

这样您就可以通过增加迭代次数或调整步长来提高准确性。它也可能有助于首先扩展您的变量。