Matlab - 用约束参数拟合曲线

Matlab - Fit a Curve with Constrained Parameters

对于 (x,y) 数据集,让 abc 中的表达式给出一条曲线。 .等,如f='a*exp(b*x)+c',要拟合为cfit=fit(x,y,f)

假设我们有一组约束,例如b>0c+b>a/2。在这种情况下我应该如何使用 fit 命令?

一种简单的方法是使拟合函数 return 具有非常大的值,如果参数值超出约束,则会导致非常大的误差。这种 "brick wall" 方法不是最优的,当拟合的参数值接近边界条件时会出现问题。值得一试,因为它实施起来很快,而且可以在简单的情况下工作。注意从边界限制内的初始参数值开始。

虽然您可以设置一个下限来执行 b>0,但我认为用 fit() 正确执行 c+b>a/2 是不可能的。但归根结底每一个拟合问题也可以看作是一个"minimize the distance from the curve to the data"问题,所以fmincon()可以用来达到你的目的:

%some sample x values
xdata = rand(1000,1);
%some parameters a,b,c
a = 2;
b = 3;
c = 4;
%resulting y values + some noise
ydata=a*exp(b*xdata)+c+rand(1000,1)*10-5;
plot(xdata,ydata,'o')

%function to minimize. It returns the sum of squared distances between the polynom and the data.
fun = @(coefs) sum((coefs(1)*exp(coefs(2).*xdata)+coefs(3)-ydata).^2);
%nonlinear constaint to enforce c+b>a/2, which is the same as -(c+b-a/2)<0
nonlcon = @(coefs)deal(-(coefs(3)+coefs(2)-coefs(1)/2), 0);
% lower bounds to enforce b>0
lb = [-inf 0 -inf];
%starting values
x0 = [1 1 1];
%finally find the coefficients (which should approximately be the values of a, b and c)
coefs = fmincon(fun,x0,[],[],[],[],lb,[],nonlcon)

对于只是数值的约束,例如b > 0,您可以使用'Lower' and 'Upper' bounds arguments to specify those. For more complex relationships, like c+b>a/2, you'll have to take an approach like , setting the function output to a high value like flintmax来产生一个大的错误。例如,假设我这样定义我的函数:

function y = my_fcn(a, b, c, x)
  if (c+b > a/2)
    y = a.*exp(b.*x)+c;
  else
    y = flintmax().*ones(size(x));
  end
end

我可以创建一组嘈杂的测试数据如下:

a = 4;
b = 2;
c = 1;
x = (0:0.01:2).';
y = my_fcn(a, b, c, x) + 40.*(rand(size(x))-0.5);

然后拟合曲线(请注意,您必须使用 anonymous function, since a function handle 由于某种原因不起作用):

params = fit(x, y, @(a, b, c, x) my_fcn(a, b, c, x), ...
             'StartPoint', [1 1 1], ...  % Starting guesses for [a b c]
             'Lower', [-Inf 0 -Inf]);    % Set bound for 'b'

params = 

     General model:
     params(x) = my_fcn(a,b,c,x)
     Coefficients (with 95% confidence bounds):
       a =       4.297  (2.985, 5.609)
       b =       1.958  (1.802, 2.113)
       c =      0.1908  (-4.061, 4.442)

请注意,拟合值接近原始值,但由于噪声的原因并不完全匹配。我们可以像这样想象拟合:

plot(x, y);
hold on;
plot(x, my_fcn(params.a, params.b, params.c, x), 'r');