Boost Spirit 将表达式标记化为向量
Boost Spirit tokenise expression into vector
我正在尝试解析一个也可以包含标识符的表达式并将每个元素放入 std::vector <std::string>
,我想出了以下语法:
#include <boost/spirit/include/qi.hpp>
#include <boost/spirit/include/phoenix_core.hpp>
#include <boost/spirit/include/phoenix_operator.hpp>
#include <vector>
namespace qi = boost::spirit::qi;
struct Tokeniser
: boost::spirit::qi::grammar <std::string::const_iterator, std::vector <std::string> (), boost::spirit::ascii::space_type>
{
Tokeniser() : Tokeniser::base_type(expression)
{
namespace qi = boost::spirit::qi;
expression =
term >>
*( (qi::string("+")[qi::_val.push_back(qi::_1)] >> term) |
(qi::string("-")[qi::_val.push_back(qi::_1)] >> term) );
term =
factor >>
*( (qi::string("*")[qi::_val.push_back(qi::_1)] >> factor) |
(qi::string("/")[qi::_val.push_back(qi::_1)] >> factor) );
factor =
(identifier | myDouble_)[qi::_val.push_back(qi::_1)] |
qi::string("(")[qi::_val.push_back(qi::_1)] >> expression >> qi::string(")")[qi::_val.push_back(qi::_1)];
identifier = qi::raw [ qi::lexeme[ (qi::alpha | '_') >> *(qi::alnum | '_') ] ];
myDouble_ = qi::raw [ qi::double_ ];
}
boost::spirit::qi::rule<std::string::const_iterator, std::vector <std::string> (), boost::spirit::ascii::space_type> expression;
boost::spirit::qi::rule<std::string::const_iterator, boost::spirit::ascii::space_type> factor;
boost::spirit::qi::rule<std::string::const_iterator, boost::spirit::ascii::space_type> term;
boost::spirit::qi::rule<std::string::const_iterator, std::string(), boost::spirit::ascii::space_type> identifier;
boost::spirit::qi::rule<std::string::const_iterator, std::string(), boost::spirit::ascii::space_type> myDouble_;
};
但是,我收到以下错误 'const struct boost::phoenix::actor<boost::spirit::attribute<0> >' has no member named 'push_back'
。
有没有直接的方法来执行我想做的事情?
是的,占位符类型(显然)没有 push_back
成员。
C++ 是强类型的。任何延迟的动作都是一个 "illusion":演员在表达式模板中通过组合可以 "evaluated" 之后的特殊用途类型来表示。
表达式模板简介
以防万一您想了解它实际 的工作原理,从头开始一个简单的示例。注释描述了代码各个部分的作用:
// we have lazy placeholder types:
template <int N> struct placeholder {};
placeholder<1> _1;
placeholder<2> _2;
placeholder<3> _3;
// note that every type here is stateless, and acts just like a more
// complicated placeholder.
// We can have expressions, like binary addition:
template <typename L, typename R> struct addition { };
template <typename L, typename R> struct multiplication { };
// here is the "factory" for our expression template:
template <typename L, typename R> addition<L,R> operator+(L const&, R const&) { return {}; }
template <typename L, typename R> multiplication<L,R> operator*(L const&, R const&) { return {}; }
///////////////////////////////////////////////
// To evaluate/interpret the expressions, we have to define "evaluation" for each type of placeholder:
template <typename Ctx, int N>
auto eval(Ctx& ctx, placeholder<N>) { return ctx.arg(N); }
template <typename Ctx, typename L, typename R>
auto eval(Ctx& ctx, addition<L, R>) { return eval(ctx, L{}) + eval(ctx, R{}); }
template <typename Ctx, typename L, typename R>
auto eval(Ctx& ctx, multiplication<L, R>) { return eval(ctx, L{}) * eval(ctx, R{}); }
///////////////////////////////////////////////
// A simple real-life context would contain the arguments:
#include <vector>
struct Context {
std::vector<double> _args;
// define the operation to get an argument from this context:
double arg(int i) const { return _args.at(i-1); }
};
#include <iostream>
int main() {
auto foo = _1 + _2 + _3;
Context ctx { { 3, 10, -4 } };
std::cout << "foo: " << eval(ctx, foo) << "\n";
std::cout << "_1 + _2 * _3: " << eval(ctx, _1 + _2 * _3) << "\n";
}
输出正是您所期望的:
foo: 9
_1 + _2 * _3: -37
修复操作:
您必须 "describe" push_back
操作,而不是尝试在占位符上查找此类操作。凤凰有你的支持:
#include <boost/phoenix/stl.hpp>
现在我将简化操作以使用 phoenix::push_back
:
auto push = px::push_back(qi::_val, qi::_1);
expression =
term >>
*( (qi::string("+")[push] >> term) |
(qi::string("-")[push] >> term) );
term =
factor >>
*( (qi::string("*")[push] >> factor) |
(qi::string("/")[push] >> factor) );
factor =
(identifier | myDouble_)[push] |
qi::string("(")[push] >> expression >> qi::string(")")[push];
// etc.
但是,这还有一个问题,即 _val
被解析为规则的属性类型。但是您的一些规则 没有声明 属性类型,因此它默认为 qi::unused_type
。显然,为该属性生成 "push_back" 评估代码不适用于 unused_type
。
让我们修复这些声明:
qi::rule<It, std::vector<std::string>(), boost::spirit::ascii::space_type> expression;
qi::rule<It, std::vector<std::string>(), boost::spirit::ascii::space_type> factor;
qi::rule<It, std::vector<std::string>(), boost::spirit::ascii::space_type> term;
其他问题!
当我们这样做时,令牌基本上是空的。给出了什么?
在存在语义动作的情况下,自动属性传播被禁止。因此,您必须努力获取附加到最终标记向量的子表达式的内容。
同样,使用 Phoenix 的 STL 支持:
auto push = px::push_back(qi::_val, qi::_1);
auto propagate = px::insert(qi::_val, px::end(qi::_val), px::begin(qi::_1), px::end(qi::_1));
expression =
term[propagate] >>
*( (qi::string("+")[push] >> term[propagate]) |
(qi::string("-")[push] >> term[propagate]) );
term =
factor[propagate] >>
*( (qi::string("*")[push] >> factor[propagate]) |
(qi::string("/")[push] >> factor[propagate]) );
factor =
(identifier | myDouble_)[push] |
qi::string("(")[push] >> expression[propagate] >> qi::string(")")[push];
现在,使用 Live On Coliru
进行测试
#define BOOST_SPIRIT_DEBUG
#include <boost/spirit/include/qi.hpp>
#include <boost/spirit/include/phoenix.hpp>
#include <boost/phoenix/stl.hpp>
#include <vector>
namespace qi = boost::spirit::qi;
namespace px = boost::phoenix;
template <typename It = std::string::const_iterator>
struct Tokeniser
: qi::grammar <It, std::vector <std::string> (), boost::spirit::ascii::space_type>
{
Tokeniser() : Tokeniser::base_type(expression)
{
auto push = px::push_back(qi::_val, qi::_1);
auto propagate = px::insert(qi::_val, px::end(qi::_val), px::begin(qi::_1), px::end(qi::_1));
expression =
term[propagate] >>
*( (qi::string("+")[push] >> term[propagate]) |
(qi::string("-")[push] >> term[propagate]) );
term =
factor[propagate] >>
*( (qi::string("*")[push] >> factor[propagate]) |
(qi::string("/")[push] >> factor[propagate]) );
factor =
(identifier | myDouble_)[push] |
qi::string("(")[push] >> expression[propagate] >> qi::string(")")[push];
identifier = qi::raw [ qi::lexeme[ (qi::alpha | '_') >> *(qi::alnum | '_') ] ];
myDouble_ = qi::raw [ qi::double_ ];
BOOST_SPIRIT_DEBUG_NODES((expression)(term)(factor)(identifier)(myDouble_))
}
qi::rule<It, std::vector<std::string>(), boost::spirit::ascii::space_type> expression;
qi::rule<It, std::vector<std::string>(), boost::spirit::ascii::space_type> factor;
qi::rule<It, std::vector<std::string>(), boost::spirit::ascii::space_type> term;
qi::rule<It, std::string(), boost::spirit::ascii::space_type> identifier;
qi::rule<It, std::string(), boost::spirit::ascii::space_type> myDouble_;
};
int main() {
Tokeniser<> tok;
std::string const input = "x + 89/(y*y)";
auto f = input.begin(), l = input.end();
std::vector<std::string> tokens;
if (phrase_parse(f, l, tok, boost::spirit::ascii::space, tokens)) {
std::cout << "Parsed " << tokens.size() << " tokens:\n";
for (auto& token : tokens)
std::cout << " - '" << token << "'\n";
} else {
std::cout << "Parse failed\n";
}
if (f != l)
std::cout << "Remaining unparsed input: '" << std::string(f,l) << "'\n";
}
版画
Parsed 9 tokens:
- 'x'
- '+'
- '89'
- '/'
- '('
- 'y'
- '*'
- 'y'
- ')'
大清理
一般来说,避免语义操作(参见我的回答 Boost Spirit: "Semantic actions are evil"? - 特别是关于副作用的项目符号)。大多数时候,您可以摆脱自动属性传播。我想说这是 Boost Spirit 的主要卖点。
进一步简化 skipping/lexemes (Boost spirit skipper issues) 确实显着减少了代码和编译时间:
#define BOOST_SPIRIT_DEBUG
#include <boost/spirit/include/qi.hpp>
#include <vector>
namespace qi = boost::spirit::qi;
template <typename It = std::string::const_iterator>
struct Tokeniser : qi::grammar <It, std::vector <std::string>()> {
Tokeniser() : Tokeniser::base_type(start)
{
start = qi::skip(boost::spirit::ascii::space) [expression];
expression =
term >>
*( (qi::string("+") >> term) |
(qi::string("-") >> term) );
term =
factor >>
*( (qi::string("*") >> factor) |
(qi::string("/") >> factor) );
factor =
(identifier | myDouble_) |
qi::string("(") >> expression >> qi::string(")");
identifier = qi::raw [ (qi::alpha | '_') >> *(qi::alnum | '_') ];
myDouble_ = qi::raw [ qi::double_ ];
BOOST_SPIRIT_DEBUG_NODES((expression)(term)(factor)(identifier)(myDouble_))
}
qi::rule<It, std::vector<std::string>()> start;
qi::rule<It, std::vector<std::string>(), boost::spirit::ascii::space_type> expression, factor, term;
qi::rule<It, std::string()> identifier, myDouble_;
};
int main() {
Tokeniser<> tok;
std::string const input = "x + 89/(y*y)";
auto f = input.begin(), l = input.end();
std::vector<std::string> tokens;
if (parse(f, l, tok, tokens)) {
std::cout << "Parsed " << tokens.size() << " tokens:\n";
for (auto& token : tokens)
std::cout << " - '" << token << "'\n";
} else {
std::cout << "Parse failed\n";
}
if (f != l)
std::cout << "Remaining unparsed input: '" << std::string(f,l) << "'\n";
}
仍然打印
Parsed 9 tokens:
- 'x'
- '+'
- '89'
- '/'
- '('
- 'y'
- '*'
- 'y'
- ')'
遗留问题
您是否考虑过回溯行为?我认为您需要在规则中明智地放置一些 qi::hold[]
指令,例如参见Understanding Boost.spirit's string parser
大问题:
- 当你想要的只是代币时,你为什么要"parsing"?
- 你会用代币做什么?解析器构建了很多信息,只是为了再次丢弃它
我正在尝试解析一个也可以包含标识符的表达式并将每个元素放入 std::vector <std::string>
,我想出了以下语法:
#include <boost/spirit/include/qi.hpp>
#include <boost/spirit/include/phoenix_core.hpp>
#include <boost/spirit/include/phoenix_operator.hpp>
#include <vector>
namespace qi = boost::spirit::qi;
struct Tokeniser
: boost::spirit::qi::grammar <std::string::const_iterator, std::vector <std::string> (), boost::spirit::ascii::space_type>
{
Tokeniser() : Tokeniser::base_type(expression)
{
namespace qi = boost::spirit::qi;
expression =
term >>
*( (qi::string("+")[qi::_val.push_back(qi::_1)] >> term) |
(qi::string("-")[qi::_val.push_back(qi::_1)] >> term) );
term =
factor >>
*( (qi::string("*")[qi::_val.push_back(qi::_1)] >> factor) |
(qi::string("/")[qi::_val.push_back(qi::_1)] >> factor) );
factor =
(identifier | myDouble_)[qi::_val.push_back(qi::_1)] |
qi::string("(")[qi::_val.push_back(qi::_1)] >> expression >> qi::string(")")[qi::_val.push_back(qi::_1)];
identifier = qi::raw [ qi::lexeme[ (qi::alpha | '_') >> *(qi::alnum | '_') ] ];
myDouble_ = qi::raw [ qi::double_ ];
}
boost::spirit::qi::rule<std::string::const_iterator, std::vector <std::string> (), boost::spirit::ascii::space_type> expression;
boost::spirit::qi::rule<std::string::const_iterator, boost::spirit::ascii::space_type> factor;
boost::spirit::qi::rule<std::string::const_iterator, boost::spirit::ascii::space_type> term;
boost::spirit::qi::rule<std::string::const_iterator, std::string(), boost::spirit::ascii::space_type> identifier;
boost::spirit::qi::rule<std::string::const_iterator, std::string(), boost::spirit::ascii::space_type> myDouble_;
};
但是,我收到以下错误 'const struct boost::phoenix::actor<boost::spirit::attribute<0> >' has no member named 'push_back'
。
有没有直接的方法来执行我想做的事情?
是的,占位符类型(显然)没有 push_back
成员。
C++ 是强类型的。任何延迟的动作都是一个 "illusion":演员在表达式模板中通过组合可以 "evaluated" 之后的特殊用途类型来表示。
表达式模板简介
以防万一您想了解它实际 的工作原理,从头开始一个简单的示例。注释描述了代码各个部分的作用:
// we have lazy placeholder types:
template <int N> struct placeholder {};
placeholder<1> _1;
placeholder<2> _2;
placeholder<3> _3;
// note that every type here is stateless, and acts just like a more
// complicated placeholder.
// We can have expressions, like binary addition:
template <typename L, typename R> struct addition { };
template <typename L, typename R> struct multiplication { };
// here is the "factory" for our expression template:
template <typename L, typename R> addition<L,R> operator+(L const&, R const&) { return {}; }
template <typename L, typename R> multiplication<L,R> operator*(L const&, R const&) { return {}; }
///////////////////////////////////////////////
// To evaluate/interpret the expressions, we have to define "evaluation" for each type of placeholder:
template <typename Ctx, int N>
auto eval(Ctx& ctx, placeholder<N>) { return ctx.arg(N); }
template <typename Ctx, typename L, typename R>
auto eval(Ctx& ctx, addition<L, R>) { return eval(ctx, L{}) + eval(ctx, R{}); }
template <typename Ctx, typename L, typename R>
auto eval(Ctx& ctx, multiplication<L, R>) { return eval(ctx, L{}) * eval(ctx, R{}); }
///////////////////////////////////////////////
// A simple real-life context would contain the arguments:
#include <vector>
struct Context {
std::vector<double> _args;
// define the operation to get an argument from this context:
double arg(int i) const { return _args.at(i-1); }
};
#include <iostream>
int main() {
auto foo = _1 + _2 + _3;
Context ctx { { 3, 10, -4 } };
std::cout << "foo: " << eval(ctx, foo) << "\n";
std::cout << "_1 + _2 * _3: " << eval(ctx, _1 + _2 * _3) << "\n";
}
输出正是您所期望的:
foo: 9
_1 + _2 * _3: -37
修复操作:
您必须 "describe" push_back
操作,而不是尝试在占位符上查找此类操作。凤凰有你的支持:
#include <boost/phoenix/stl.hpp>
现在我将简化操作以使用 phoenix::push_back
:
auto push = px::push_back(qi::_val, qi::_1);
expression =
term >>
*( (qi::string("+")[push] >> term) |
(qi::string("-")[push] >> term) );
term =
factor >>
*( (qi::string("*")[push] >> factor) |
(qi::string("/")[push] >> factor) );
factor =
(identifier | myDouble_)[push] |
qi::string("(")[push] >> expression >> qi::string(")")[push];
// etc.
但是,这还有一个问题,即 _val
被解析为规则的属性类型。但是您的一些规则 没有声明 属性类型,因此它默认为 qi::unused_type
。显然,为该属性生成 "push_back" 评估代码不适用于 unused_type
。
让我们修复这些声明:
qi::rule<It, std::vector<std::string>(), boost::spirit::ascii::space_type> expression;
qi::rule<It, std::vector<std::string>(), boost::spirit::ascii::space_type> factor;
qi::rule<It, std::vector<std::string>(), boost::spirit::ascii::space_type> term;
其他问题!
当我们这样做时,令牌基本上是空的。给出了什么?
在存在语义动作的情况下,自动属性传播被禁止。因此,您必须努力获取附加到最终标记向量的子表达式的内容。
同样,使用 Phoenix 的 STL 支持:
auto push = px::push_back(qi::_val, qi::_1);
auto propagate = px::insert(qi::_val, px::end(qi::_val), px::begin(qi::_1), px::end(qi::_1));
expression =
term[propagate] >>
*( (qi::string("+")[push] >> term[propagate]) |
(qi::string("-")[push] >> term[propagate]) );
term =
factor[propagate] >>
*( (qi::string("*")[push] >> factor[propagate]) |
(qi::string("/")[push] >> factor[propagate]) );
factor =
(identifier | myDouble_)[push] |
qi::string("(")[push] >> expression[propagate] >> qi::string(")")[push];
现在,使用 Live On Coliru
进行测试#define BOOST_SPIRIT_DEBUG
#include <boost/spirit/include/qi.hpp>
#include <boost/spirit/include/phoenix.hpp>
#include <boost/phoenix/stl.hpp>
#include <vector>
namespace qi = boost::spirit::qi;
namespace px = boost::phoenix;
template <typename It = std::string::const_iterator>
struct Tokeniser
: qi::grammar <It, std::vector <std::string> (), boost::spirit::ascii::space_type>
{
Tokeniser() : Tokeniser::base_type(expression)
{
auto push = px::push_back(qi::_val, qi::_1);
auto propagate = px::insert(qi::_val, px::end(qi::_val), px::begin(qi::_1), px::end(qi::_1));
expression =
term[propagate] >>
*( (qi::string("+")[push] >> term[propagate]) |
(qi::string("-")[push] >> term[propagate]) );
term =
factor[propagate] >>
*( (qi::string("*")[push] >> factor[propagate]) |
(qi::string("/")[push] >> factor[propagate]) );
factor =
(identifier | myDouble_)[push] |
qi::string("(")[push] >> expression[propagate] >> qi::string(")")[push];
identifier = qi::raw [ qi::lexeme[ (qi::alpha | '_') >> *(qi::alnum | '_') ] ];
myDouble_ = qi::raw [ qi::double_ ];
BOOST_SPIRIT_DEBUG_NODES((expression)(term)(factor)(identifier)(myDouble_))
}
qi::rule<It, std::vector<std::string>(), boost::spirit::ascii::space_type> expression;
qi::rule<It, std::vector<std::string>(), boost::spirit::ascii::space_type> factor;
qi::rule<It, std::vector<std::string>(), boost::spirit::ascii::space_type> term;
qi::rule<It, std::string(), boost::spirit::ascii::space_type> identifier;
qi::rule<It, std::string(), boost::spirit::ascii::space_type> myDouble_;
};
int main() {
Tokeniser<> tok;
std::string const input = "x + 89/(y*y)";
auto f = input.begin(), l = input.end();
std::vector<std::string> tokens;
if (phrase_parse(f, l, tok, boost::spirit::ascii::space, tokens)) {
std::cout << "Parsed " << tokens.size() << " tokens:\n";
for (auto& token : tokens)
std::cout << " - '" << token << "'\n";
} else {
std::cout << "Parse failed\n";
}
if (f != l)
std::cout << "Remaining unparsed input: '" << std::string(f,l) << "'\n";
}
版画
Parsed 9 tokens:
- 'x'
- '+'
- '89'
- '/'
- '('
- 'y'
- '*'
- 'y'
- ')'
大清理
一般来说,避免语义操作(参见我的回答 Boost Spirit: "Semantic actions are evil"? - 特别是关于副作用的项目符号)。大多数时候,您可以摆脱自动属性传播。我想说这是 Boost Spirit 的主要卖点。
进一步简化 skipping/lexemes (Boost spirit skipper issues) 确实显着减少了代码和编译时间:
#define BOOST_SPIRIT_DEBUG
#include <boost/spirit/include/qi.hpp>
#include <vector>
namespace qi = boost::spirit::qi;
template <typename It = std::string::const_iterator>
struct Tokeniser : qi::grammar <It, std::vector <std::string>()> {
Tokeniser() : Tokeniser::base_type(start)
{
start = qi::skip(boost::spirit::ascii::space) [expression];
expression =
term >>
*( (qi::string("+") >> term) |
(qi::string("-") >> term) );
term =
factor >>
*( (qi::string("*") >> factor) |
(qi::string("/") >> factor) );
factor =
(identifier | myDouble_) |
qi::string("(") >> expression >> qi::string(")");
identifier = qi::raw [ (qi::alpha | '_') >> *(qi::alnum | '_') ];
myDouble_ = qi::raw [ qi::double_ ];
BOOST_SPIRIT_DEBUG_NODES((expression)(term)(factor)(identifier)(myDouble_))
}
qi::rule<It, std::vector<std::string>()> start;
qi::rule<It, std::vector<std::string>(), boost::spirit::ascii::space_type> expression, factor, term;
qi::rule<It, std::string()> identifier, myDouble_;
};
int main() {
Tokeniser<> tok;
std::string const input = "x + 89/(y*y)";
auto f = input.begin(), l = input.end();
std::vector<std::string> tokens;
if (parse(f, l, tok, tokens)) {
std::cout << "Parsed " << tokens.size() << " tokens:\n";
for (auto& token : tokens)
std::cout << " - '" << token << "'\n";
} else {
std::cout << "Parse failed\n";
}
if (f != l)
std::cout << "Remaining unparsed input: '" << std::string(f,l) << "'\n";
}
仍然打印
Parsed 9 tokens:
- 'x'
- '+'
- '89'
- '/'
- '('
- 'y'
- '*'
- 'y'
- ')'
遗留问题
您是否考虑过回溯行为?我认为您需要在规则中明智地放置一些 qi::hold[]
指令,例如参见Understanding Boost.spirit's string parser
大问题:
- 当你想要的只是代币时,你为什么要"parsing"?
- 你会用代币做什么?解析器构建了很多信息,只是为了再次丢弃它