封闭类型族的归纳定义

Inductive definition over closed type family

这或多或少是我想要实现的功能:

{-# LANGUAGE DataKinds              #-}
{-# LANGUAGE FlexibleInstances      #-}
{-# LANGUAGE GADTs                  #-}
{-# LANGUAGE InstanceSigs           #-}
{-# LANGUAGE KindSignatures         #-}
{-# LANGUAGE PolyKinds              #-}
{-# LANGUAGE RankNTypes             #-}
{-# LANGUAGE TypeFamilies           #-}
{-# LANGUAGE TypeFamilyDependencies #-}
{-# LANGUAGE TypeInType             #-}

type family ReturnType arr where
  ReturnType (a -> b) = ReturnType b
  ReturnType a = a

type family ReplaceReturnType t r where
  ReplaceReturnType (a -> b) r = a -> ReplaceReturnType b r
  ReplaceReturnType _ r = r

class CollectArgs f where
  collectArgs :: ((forall r. ReplaceReturnType f r -> r) -> ReturnType f) -> f

instance CollectArgs f => CollectArgs (a -> f) where
  collectArgs :: ((forall r. (a -> ReplaceReturnType f r) -> r) -> ReturnType f) -> a -> f
  collectArgs f a = collectArgs (\ap -> f (\k -> ap (k a)))

instance (ReturnType a ~ a, ReplaceReturnType a dummy ~ dummy) => CollectArgs a where
  collectArgs :: ((forall r. ReplaceReturnType a r -> r) -> a) -> a
  collectArgs f = f id

我最终想做的是编写在传入参数数量上具有多态性的函数,同时它们不必是类型 class 定义的一部分(对应于printf var args 样式)。所以,例如:

wrapsVariadicFunction :: (CollectArgs f) => f -> Int -> f
wrapsVariadicFunction f config = collectArgs $ \apply -> 
  if odd config 
    then error "odd config... are you nuts?!"
    else apply f

只是 f 的 return 类型可能不会与 wrapsVariadicFunction 的类型共生。

现在,在一个完美的世界中,我可以将类型 class 与封闭类型系列(封闭类型 class,可以这么说)相关联,这很容易实现,因为连接 ReplaceReturnType a r ~ r 就很清楚了。

由于我无法说明这种联系,因此可以理解,GHC 8.2.1 不清楚:

    * Could not deduce: ReplaceReturnType a r ~ r
      from the context: (ReturnType a ~ a,
                         ReplaceReturnType a dummy ~ dummy)
        bound by the instance declaration
      `r' is a rigid type variable bound by
        a type expected by the context:
          forall r. ReplaceReturnType a r -> r
      Expected type: ReplaceReturnType a r -> r
        Actual type: r -> r
    * In the first argument of `f', namely `id'
      In the expression: f id
      In an equation for `collectArgs': collectArgs f = f id
    * Relevant bindings include
        f :: (forall r. ReplaceReturnType a r -> r) -> a
        collectArgs :: ((forall r. ReplaceReturnType a r -> r) -> a) -> a
   |
29 |   collectArgs f = f id
   |

这里的解决方案是在实例上下文中对 dummy 进行普遍量化,但这是不可能的(但是,根据我在 ICFP 上看到的情况判断)。而且真的很麻烦

因此,这里的实际问题是:如何将值级别定义与封闭类型系列相关联,就像封闭类型 class 一样?或者这是不可能的,因为类型不能再被删除了?如果是这样,还有其他解决方法吗?

使这些类型 类 看起来像是重叠的标准技巧是向类型类添加第二个参数,该参数在每个实例中都是不同的,并且可以从其他参数中计算出其值。

提炼到其核心的想法如下(我们需要一些可怕的扩展,例如 UndecidableInstances,但这没关系:我们正在编写完整的程序):

{-# LANGUAGE DataKinds              #-}
{-# LANGUAGE KindSignatures         #-}
{-# LANGUAGE RankNTypes             #-}
{-# LANGUAGE TypeFamilies           #-}
{-# LANGUAGE MultiParamTypeClasses  #-}
{-# LANGUAGE FlexibleContexts       #-}
{-# LANGUAGE FlexibleInstances      #-}
{-# LANGUAGE UndecidableInstances   #-}

type family IsBase arr :: Bool where
  IsBase (a -> b) = 'False
  IsBase a        = 'True

class SillyId a b where
  sillyId :: IsBase a ~ b => a -> a

instance SillyId b (IsBase b) => SillyId (a -> b) 'False where
  sillyId f = \x -> sillyId (f x)

instance SillyId b 'True where
  sillyId t = t

现在,在你的情况下它有点复杂,因为你不仅希望这个额外的参数进行分派,你还希望其他类型级别的函数基于它来减少。诀窍就是……根据调度定义这些函数!

当然,类型级别 Bool 将不再适用:您需要保留所有信息。因此,您将得到 IsArrow:

而不是 IsBase
{-# LANGUAGE DataKinds              #-}
{-# LANGUAGE FlexibleInstances      #-}
{-# LANGUAGE InstanceSigs           #-}
{-# LANGUAGE KindSignatures         #-}
{-# LANGUAGE RankNTypes             #-}
{-# LANGUAGE TypeFamilies           #-}
{-# LANGUAGE MultiParamTypeClasses  #-}
{-# LANGUAGE FlexibleContexts       #-}
{-# LANGUAGE UndecidableInstances   #-}

type family IsArrow arr :: Either (*, *) * where
  IsArrow (a -> b) = 'Left '(a, b)
  IsArrow a        = 'Right a

type family ReturnType arr where
  ReturnType ('Left '(a, b)) = ReturnType (IsArrow b)
  ReturnType ('Right a)      = a

type family ReplaceReturnType t r where
  ReplaceReturnType ('Left '(a, b)) r = a -> ReplaceReturnType (IsArrow b) r
  ReplaceReturnType _               r = r

class CollectArgs f (f' :: Either (*, *) *) where
  collectArgs :: IsArrow f ~ f' => ((forall r. ReplaceReturnType f' r -> r) -> ReturnType f') -> f

instance CollectArgs f (IsArrow f) => CollectArgs (a -> f) ('Left '(a, f)) where
  collectArgs :: ((forall r. (a -> ReplaceReturnType (IsArrow f) r) -> r) -> ReturnType (IsArrow f)) -> a -> f
  collectArgs g a = collectArgs (\ap -> g (\k -> ap (k a)))

instance CollectArgs a ('Right a) where
  collectArgs :: IsArrow a ~ 'Right a => ((forall r. ReplaceReturnType (IsArrow a) r -> r) -> a) -> a
  collectArgs f = f id

瞧瞧。您当然可以为 ReplaceReturnType (IsArrow a) r 定义类型同义词以使符号更轻松,但这就是它的要点。