ValueError: No variables to optimize

ValueError: No variables to optimize

我正在尝试计算两个图像之间的 l2_loss 并为它们获取 gradient。这里给出了我的代码片段:

with tf.name_scope("train"):

    X = tf.placeholder(tf.float32, [1, None, None, None], name='X')
    y = tf.placeholder(tf.float32, [1, None, None, None], name='y')
    Z = tf.nn.l2_loss(X - y, name="loss")
    step_loss = tf.reduce_mean(Z)
    optimizer = tf.train.AdamOptimizer()
    training_op = optimizer.minimize(step_loss)

init = tf.global_variables_initializer()

with tf.Session() as sess:
    init.run()
    content = tf.gfile.FastGFile('cat.0.jpg', 'rb').read()
    noise = tf.gfile.FastGFile('color_img.jpg', 'rb').read()
    loss_append = []
    for epoch in range(10):
        for layer in layers:
            c = sess.run(layer, feed_dict={input_img: content})
            n = sess.run(layer, feed_dict={input_img: noise})
            sess.run(training_op, feed_dict={X: c, y: n})

但它给出了以下错误:

    Traceback (most recent call last):
   File "/home/noise_image.py",     line 68, in <module>
    training_op = optimizer.minimize(lossss)
   File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/training /optimizer.py", line 315, in minimize
    grad_loss=grad_loss)
   File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/training   /optimizer.py", line 380, in compute_gradients
    raise ValueError("No variables to optimize.")
ValueError: No variables to optimize. 

如何摆脱它?

Xy 的值来自 feed_dict,而 Z 是它们的函数,因此 TensorFlow 无法训练它们。

与其将 X 设置为占位符,不如将其分配给其张量值 (layer)。对 y 执行相同的操作。

您的最终代码应如下所示:

for epoch in range(10):
    sess.run(training_op, feed_dict={input_image_content: content, input_image_noise: noise})

您构建的图不含变量节点。您还试图在没有任何变量的情况下最小化损失函数。

最小化指的是为数学函数(成本函数)的变量找到一组值,当在函数中代入时给出最小可能值(至少局部最小值因为我们通常处理非凸函数)。

因此,当您 运行 代码时,编译器会抱怨您的成本函数中没有变量。 澄清一下,placeholder 指的是用于在 运行 时间内为图形的各种输入提供值的对象。

要解决这个问题,您必须重新考虑您要构建的图。您必须像这样定义变量:(忽略与此问题无关的代码部分)

with tf.name_scope("train"):
    X = tf.placeholder(tf.float32, [1, 224, 224, 3], name='X')
    y = tf.placeholder(tf.float32, [1, 224, 224, 3], name='y') 

    X_var = tf.get_variable('X_var', dtype = tf.float32, initializer = tf.random_normal((1, 224, 224, 3)))
    y_var = tf.get_variable('y_var', dtype = tf.float32, initializer = tf.random_normal((1, 224, 224, 3)))
    Z = tf.nn.l2_loss((X_var - X) ** 2 + (y_var - y) ** 2, name="loss")

    step_loss = tf.reduce_mean(Z)
    optimizer = tf.train.AdamOptimizer()
    training_op = optimizer.minimize(step_loss)

...
with tf.Session() as sess:
    ....
    sess.run(training_op, feed_dict={X: c, y: n})