在 R 中选择高于阈值的因子载荷
Selecting factor loadings above threshold in R
我正在使用 R 中 psych 包中的以下命令执行因子分析。
fa <- fa(convAll[-1], nfactors=5, rotate = "promax", fm="pa")
它生成可以保存在 CSV 文件中的因子载荷。下面提供了此类文件的示例。
PA5 PA3 PA1 PA2 PA4
adv 0.083567828 0.26568194 0.051709392 0.145763195 -0.118456783
adv_down 0.073272749 0.031264884 -0.082601123 0.196925251 0.012515693
adv_place 0.028650579 0.195255276 -0.028781995 0.011087121 -0.075995905
adv_time 0.140393013 0.256528641 -0.079074986 -0.049583628 0.077695781
amplifr -0.005328985 0.043233732 0.176904981 -0.026720026 -0.090867507
att_vb_other 0.09240641 -0.035350749 0.223306084 0.017628218 -0.014419588
comm_vb_other 0.063530526 -0.013204134 0.105246297 -0.028007553 0.558798415
conj_advl 0.048185731 0.11380117 0.014882315 0.329070824 -0.049132805
contract 0.379176251 0.103187601 0.173065276 -0.213728905 -0.074295022
coord_conj_cls 0.099132548 0.235969867 0.086063555 0.191272967 -0.047419106
coord_conj_phrs -0.094208803 -0.039195575 0.042876041 0.085711817 -0.072005987
disc_particle 0.23693194 0.063337377 0.020130766 -0.195263816 0.064033528
do_pro 0.328570052 -0.043968998 0.093690313 -0.074335324 -0.078537628
emphatic 0.115773696 0.183956168 0.198039834 -0.068159604 -0.127846385
fact_vb_other 0.059866245 -0.037114568 0.298395774 -0.079350697 0.053288398
hedge 0.014631137 0.114725108 0.060555295 -0.009892361 0.000415616
infinitive -0.007423406 0.017473329 0.1534992 0.133033783 0.050682644
jj_attr -0.355339091 -0.379083698 -0.063350973 0.023637592 -0.220351424
jj_pred 0.174898501 0.002472112 0.075689444 0.102759711 -0.056187374
likely_vb_other 0.01709907 0.038883434 0.263396208 0.143448431 -0.041417434
mod_necess 0.233491105 -0.036824461 0.027589775 0.090104444 0.065779138
mod_poss 0.392744267 -0.053985013 -0.022362104 0.024825812 0.036541161
mod_pred 0.43496355 -0.030372919 -0.129436799 0.05482249 0.024503805
nn_abstact 0.050477208 -0.284252513 0.019715273 0.147725317 -0.038579005
我只想提取那些因子载荷高于 .295 的正负变量。为此,我编写了以下函数,它将因子加载对象作为输入,并在删除低于阈值后将每个因子写入 CSV 文件。
write.factors <- function(loadings, cutoff_p = 0.295, cutoff_n = -0.295, file_name = "factors.csv"){
f <- data.frame(unclass(loadings))
for(c in 1:ncol(f)){
variables <- rownames(f)
ff <- data.frame(variables, f[,c])
colnames(ff)[2] <- colnames(f)[c]
nd <- subset(data.frame(ff, ff[,2] > cutoff_p | ff[,2] < cutoff_n))
write.csv(file = file_name, nd, append = TRUE)
write.csv(file = file_name, "\r\n", append = TRUE)
}
}
write.factors(fa$loadings)
如您所见,逻辑似乎很简单,但我无法获得输出,因为存在关于附加被忽略的警告。我在函数中创建的对象似乎是列表对象,但如您所见,我正在尝试创建数据框,以便稍后删除低于阈值的行并将它们一一保存到 CSV 中。
非常感谢您提出有用的意见。
在查阅了各种在线资源后,我对我的功能进行了以下更改。所以现在它递增地写入循环的输出。
write.factors <- function(loadings, cutoff_p = 0.295, cutoff_n = -0.295, file_name = "factors.csv"){
f <- data.frame(unclass(loadings))
sink(file_name)
for(c in 1:ncol(f)){
variables <- rownames(f)
ff <- data.frame(variables, f[,c])
colnames(ff)[2] <- colnames(f)[c]
nd <- subset(ff, ff[,2] > cutoff_p | ff[,2] < cutoff_n)
nd <- droplevels(nd)
write.csv(nd)
cat('____________________________')
cat('\n')
}
sink()
}
write.factors(fa$loadings)
我正在使用 R 中 psych 包中的以下命令执行因子分析。
fa <- fa(convAll[-1], nfactors=5, rotate = "promax", fm="pa")
它生成可以保存在 CSV 文件中的因子载荷。下面提供了此类文件的示例。
PA5 PA3 PA1 PA2 PA4
adv 0.083567828 0.26568194 0.051709392 0.145763195 -0.118456783
adv_down 0.073272749 0.031264884 -0.082601123 0.196925251 0.012515693
adv_place 0.028650579 0.195255276 -0.028781995 0.011087121 -0.075995905
adv_time 0.140393013 0.256528641 -0.079074986 -0.049583628 0.077695781
amplifr -0.005328985 0.043233732 0.176904981 -0.026720026 -0.090867507
att_vb_other 0.09240641 -0.035350749 0.223306084 0.017628218 -0.014419588
comm_vb_other 0.063530526 -0.013204134 0.105246297 -0.028007553 0.558798415
conj_advl 0.048185731 0.11380117 0.014882315 0.329070824 -0.049132805
contract 0.379176251 0.103187601 0.173065276 -0.213728905 -0.074295022
coord_conj_cls 0.099132548 0.235969867 0.086063555 0.191272967 -0.047419106
coord_conj_phrs -0.094208803 -0.039195575 0.042876041 0.085711817 -0.072005987
disc_particle 0.23693194 0.063337377 0.020130766 -0.195263816 0.064033528
do_pro 0.328570052 -0.043968998 0.093690313 -0.074335324 -0.078537628
emphatic 0.115773696 0.183956168 0.198039834 -0.068159604 -0.127846385
fact_vb_other 0.059866245 -0.037114568 0.298395774 -0.079350697 0.053288398
hedge 0.014631137 0.114725108 0.060555295 -0.009892361 0.000415616
infinitive -0.007423406 0.017473329 0.1534992 0.133033783 0.050682644
jj_attr -0.355339091 -0.379083698 -0.063350973 0.023637592 -0.220351424
jj_pred 0.174898501 0.002472112 0.075689444 0.102759711 -0.056187374
likely_vb_other 0.01709907 0.038883434 0.263396208 0.143448431 -0.041417434
mod_necess 0.233491105 -0.036824461 0.027589775 0.090104444 0.065779138
mod_poss 0.392744267 -0.053985013 -0.022362104 0.024825812 0.036541161
mod_pred 0.43496355 -0.030372919 -0.129436799 0.05482249 0.024503805
nn_abstact 0.050477208 -0.284252513 0.019715273 0.147725317 -0.038579005
我只想提取那些因子载荷高于 .295 的正负变量。为此,我编写了以下函数,它将因子加载对象作为输入,并在删除低于阈值后将每个因子写入 CSV 文件。
write.factors <- function(loadings, cutoff_p = 0.295, cutoff_n = -0.295, file_name = "factors.csv"){
f <- data.frame(unclass(loadings))
for(c in 1:ncol(f)){
variables <- rownames(f)
ff <- data.frame(variables, f[,c])
colnames(ff)[2] <- colnames(f)[c]
nd <- subset(data.frame(ff, ff[,2] > cutoff_p | ff[,2] < cutoff_n))
write.csv(file = file_name, nd, append = TRUE)
write.csv(file = file_name, "\r\n", append = TRUE)
}
}
write.factors(fa$loadings)
如您所见,逻辑似乎很简单,但我无法获得输出,因为存在关于附加被忽略的警告。我在函数中创建的对象似乎是列表对象,但如您所见,我正在尝试创建数据框,以便稍后删除低于阈值的行并将它们一一保存到 CSV 中。 非常感谢您提出有用的意见。
在查阅了各种在线资源后,我对我的功能进行了以下更改。所以现在它递增地写入循环的输出。
write.factors <- function(loadings, cutoff_p = 0.295, cutoff_n = -0.295, file_name = "factors.csv"){
f <- data.frame(unclass(loadings))
sink(file_name)
for(c in 1:ncol(f)){
variables <- rownames(f)
ff <- data.frame(variables, f[,c])
colnames(ff)[2] <- colnames(f)[c]
nd <- subset(ff, ff[,2] > cutoff_p | ff[,2] < cutoff_n)
nd <- droplevels(nd)
write.csv(nd)
cat('____________________________')
cat('\n')
}
sink()
}
write.factors(fa$loadings)