如何使用 Spacy 按句子分解文档
How to break up document by sentences with Spacy
如何将文档(例如段落、书籍等)分解成句子。
例如,"The dog ran. The cat jumped"
变成 ["The dog ran", "The cat jumped"]
with spacy?
来自 spacy's github support page
from __future__ import unicode_literals, print_function
from spacy.en import English
raw_text = 'Hello, world. Here are two sentences.'
nlp = English()
doc = nlp(raw_text)
sentences = [sent.string.strip() for sent in doc.sents]
最新的答案是这样的:
from __future__ import unicode_literals, print_function
from spacy.lang.en import English # updated
raw_text = 'Hello, world. Here are two sentences.'
nlp = English()
nlp.add_pipe(nlp.create_pipe('sentencizer')) # updated
doc = nlp(raw_text)
sentences = [sent.string.strip() for sent in doc.sents]
回答
import spacy
nlp = spacy.load('en_core_web_sm')
text = 'My first birthday was great. My 2. was even better.'
sentences = [i for i in nlp(text).sents]
附加信息
这假定您已经在系统上安装了模型 "en_core_web_sm"。如果没有,您可以在终端中通过 运行 以下命令轻松安装它:
$ python -m spacy download en_core_web_sm
(有关所有可用模型的概述,请参阅 here。)
根据您的数据,这可能会比仅使用 spacy.lang.en.English
产生更好的结果。一个(非常简单的)比较示例:
import spacy
from spacy.lang.en import English
nlp_simple = English()
nlp_simple.add_pipe(nlp_simple.create_pipe('sentencizer'))
nlp_better = spacy.load('en_core_web_sm')
text = 'My first birthday was great. My 2. was even better.'
for nlp in [nlp_simple, nlp_better]:
for i in nlp(text).sents:
print(i)
print('-' * 20)
输出:
>>> My first birthday was great.
>>> My 2.
>>> was even better.
>>> --------------------
>>> My first birthday was great.
>>> My 2. was even better.
>>> --------------------
对于 spacy 3.0.1,他们改变了管道。
from spacy.lang.en import English
nlp = English()
nlp.add_pipe('sentencizer')
def split_in_sentences(text):
doc = nlp(text)
return [str(sent).strip() for sent in doc.sents]
已更新以反映第一个答案中的评论
from spacy.lang.en import English
raw_text = 'Hello, world. Here are two sentences.'
nlp = English()
nlp.add_pipe('sentencizer')
doc = nlp(raw_text)
sentences = [sent.text.strip() for sent in doc.sents]
如何将文档(例如段落、书籍等)分解成句子。
例如,"The dog ran. The cat jumped"
变成 ["The dog ran", "The cat jumped"]
with spacy?
来自 spacy's github support page
from __future__ import unicode_literals, print_function
from spacy.en import English
raw_text = 'Hello, world. Here are two sentences.'
nlp = English()
doc = nlp(raw_text)
sentences = [sent.string.strip() for sent in doc.sents]
最新的答案是这样的:
from __future__ import unicode_literals, print_function
from spacy.lang.en import English # updated
raw_text = 'Hello, world. Here are two sentences.'
nlp = English()
nlp.add_pipe(nlp.create_pipe('sentencizer')) # updated
doc = nlp(raw_text)
sentences = [sent.string.strip() for sent in doc.sents]
回答
import spacy
nlp = spacy.load('en_core_web_sm')
text = 'My first birthday was great. My 2. was even better.'
sentences = [i for i in nlp(text).sents]
附加信息
这假定您已经在系统上安装了模型 "en_core_web_sm"。如果没有,您可以在终端中通过 运行 以下命令轻松安装它:
$ python -m spacy download en_core_web_sm
(有关所有可用模型的概述,请参阅 here。)
根据您的数据,这可能会比仅使用 spacy.lang.en.English
产生更好的结果。一个(非常简单的)比较示例:
import spacy
from spacy.lang.en import English
nlp_simple = English()
nlp_simple.add_pipe(nlp_simple.create_pipe('sentencizer'))
nlp_better = spacy.load('en_core_web_sm')
text = 'My first birthday was great. My 2. was even better.'
for nlp in [nlp_simple, nlp_better]:
for i in nlp(text).sents:
print(i)
print('-' * 20)
输出:
>>> My first birthday was great.
>>> My 2.
>>> was even better.
>>> --------------------
>>> My first birthday was great.
>>> My 2. was even better.
>>> --------------------
对于 spacy 3.0.1,他们改变了管道。
from spacy.lang.en import English
nlp = English()
nlp.add_pipe('sentencizer')
def split_in_sentences(text):
doc = nlp(text)
return [str(sent).strip() for sent in doc.sents]
已更新以反映第一个答案中的评论
from spacy.lang.en import English
raw_text = 'Hello, world. Here are two sentences.'
nlp = English()
nlp.add_pipe('sentencizer')
doc = nlp(raw_text)
sentences = [sent.text.strip() for sent in doc.sents]