如何使用具有强制性最小元素数量的boost spirit list运算符?

How to use boost spirit list operator with mandatory minimum amount of elements?

我想解析点语言 (http://www.graphviz.org/content/dot-language)。它是一种图形定义语言,用于定义节点和它们之间的连接。一个典型的语句看起来像 node1->node2->node3;。最好使用 boost::spirit 列表运算符 % 来制作节点列表。一个天真的方法是:

edge_stmt %=
    (
        node_or_subgraph(_r1) % (qi::eps(_r1) >> tok.diredgeop | tok.undiredgeop)
    ) >> -attr_list;

_r1表示这是有向图还是无向图,diredgeop->的token,undiredgeop分别是--的token。

问题是上面的代码只对 node1; 会成功,这是不正确的。为了获得正确的解析器,我必须以某种方式声明 % 构建的列表中必须至少有两个元素。怎么样?

文档说 a % b 等同于 a >> *(omit[b] >> a),这是不正确的。有人可能想试试这个:

edge_stmt %=
    (
        node_or_subgraph(_r1) >>
            +(
                qi::omit
                [
                    qi::eps(_r1) >> tok.diredgeop | tok.undiredgeop
                ] >>
                node_or_subgraph(_r1)
            )
    ) >> -attr_list;

但是这段代码并没有产生向量,它的合成属性是一个元组。

我当然可以尝试语义操作,但是有没有没有语义操作的优雅替代方案?

要使列表运算符接受最小数量的元素,需要创建一个引入该行为的全新解析器,因为与 repeat 不同,它未配置为这样做。我希望下面的例子可以帮助您了解如何使用 a >> +(omit[b] >> a) 来实现您想要的。

Running on WandBox

#include <iostream>
#include <vector>
#include <boost/spirit/include/qi.hpp>
#include <boost/fusion/include/std_pair.hpp>

namespace qi= boost::spirit::qi;

void print(const std::vector<std::string>& data) 
{
    std::cout << "{ ";
    for(const auto& elem : data) {
        std::cout << elem << " ";
    }
    std::cout << "} ";
}

void print(const std::pair<std::string,double>& data) 
{
    std::cout << "[ " << data.first << ", " << data.second << " ]";
}


template <typename Parser,typename... Attrs>
void parse(const std::string& str, const Parser& parser, Attrs&... attrs)
{
    std::string::const_iterator iter=std::begin(str), end=std::end(str);
    bool result = qi::phrase_parse(iter,end,parser,qi::space,attrs...);
    if(result && iter==end) {
        std::cout << "Success.";
        int ignore[] = {(print(attrs),0)...};
        std::cout << "\n";
    } else {
        std::cout << "Something failed. Unparsed: \"" << std::string(iter,end) << "\"\n";
    }
}

template <typename Parser>
void parse_with_nodes(const std::string& str, const Parser& parser) 
{
    std::vector<std::string> nodes;
    parse(str,parser,nodes);
}

template <typename Parser>
void parse_with_nodes_and_attr(const std::string& str, const Parser& parser) 
{
    std::vector<std::string> nodes;
    std::pair<std::string,double> attr_pair;
    parse(str,parser,nodes,attr_pair);
}

int main()
{
    qi::rule<std::string::const_iterator,std::string()> node=+qi::alnum;
    qi::rule<std::string::const_iterator,std::pair<std::string,double>(),qi::space_type> attr = +qi::alpha >> '=' >> qi::double_;


    parse_with_nodes("node1->node2", node % "->");

    parse_with_nodes_and_attr("node1->node2 arrowsize=1.0", node % "->" >> attr);

    parse_with_nodes("node1->node2", node >> +("->" >> node));

    //parse_with_nodes_and_attr("node1->node2 arrowsize=1.0", node >> +("->" >> node) >> attr); 

    qi::rule<std::string::const_iterator,std::vector<std::string>(),qi::space_type> at_least_two_nodes = node >> +("->" >> node);
    parse_with_nodes_and_attr("node1->node2 arrowsize=1.0", at_least_two_nodes >> attr);
}

The problem is the above code will succeed for just node1;, which is incorrect.

你在逆流而上。在 DOT 中 node1; 就可以了。因此,安排语法来反映它可能更容易。

注意事项

Graphviz 的语法有很多特质,很难将语法树直接转换为有用的图形表示。

我认为这反映了这样一个事实,即他们自己的解析函数动态地构建了一个图,根本没有试图表示源语法树。

这是显而易见的,因为语义是有状态的,在全局状态、词法范围和子图命名空间之间有微妙的混合。图中出现的顺序很重要。节点总是共享一个 "global" 命名空间 并且 可以隐式声明这一事实是一个并不能真正简化事情的因素。

如何解决

虽然我通常 不是语义动作的粉丝¹,但语义动作似乎是这里要使用的东西。您可以通过使用 "event" 响应每个已解析的规则来模仿 Graphviz 解析器的行为,该 "event" 可以由有状态 "builder" 处理,这会导致对域模型进行适当的更改。

但是,我尝试这样做,它变得非常复杂,主要是因为规则的合成类型不便于构建。

关注点分离 是消除此类瓶颈²的关键。

如果您首先解析为纯 AST,然后从中构建模型,那么解析器和语义逻辑都会得到极大的简化。

模型

我发明了以下 Model 表示,我认为它很好地捕捉了 GraphViz 领域模型的语义:

TODO(但请参阅评论中的更新)

AST

让我们创建一个 单独的 集 类 来表示源文档。注:

namespace Model {
    using Id = std::string;

    using Attributes = std::map<Id, std::string>;
    enum class GraphKind { directed, undirected };

    enum class CompassPoint { n, ne, e, se, s, sw, w, nw, c, _ };

    struct NodeRef {
        Id id;
        Id port;
        CompassPoint compass_pt = CompassPoint::_;
    };
}

namespace Ast {
    using Model::CompassPoint;
    using Model::Id;
    using Model::NodeRef;
    using Model::GraphKind;
    using OptionalId = boost::optional<Id>;

    using AList    = Model::Attributes;
    using AttrList = std::vector<AList>;

    struct AttrStmt {
        enum Group { graph, node, edge } group;
        AttrList attributes;
    };

    struct Attr {
        Id key, value;

        operator std::pair<Id, Id>() const { return {key, value}; }
    };

    struct NodeStmt {
        NodeRef node_id;
        AttrList attributes;
    };

    struct EdgeStmt;
    using Stmt = boost::variant<
            AttrStmt,
            Attr,
            NodeStmt,
            boost::recursive_wrapper<EdgeStmt> // includes sub graphs
        >;

    using StmtList = std::vector<Stmt>;

    struct Graph {
        OptionalId id;
        StmtList stmt_list;
    };

    struct EdgeStmt {
        std::vector<boost::variant<NodeRef, Graph> > hops;
        AttrList attributes;
    };

    struct GraphViz {
        bool strict;
        GraphKind kind;
        Graph graph;
    };
}

语法

语法完全遵循规范,并将 1:1 映射到 Ast,因此我们不必再做任何魔术(¹)。

namespace Parser {

    namespace qi = boost::spirit::qi;
    namespace px = boost::phoenix;

    template <typename It>
    struct GraphViz : qi::grammar<It, Ast::GraphViz()> {
        GraphViz() : GraphViz::base_type(start) {
            using namespace qi;
            using boost::spirit::repository::qi::distinct;
            auto kw = distinct(char_("a-zA-Z0-9_"));

            start   = skip(space) [matches[kw["strict"]] >> kind_ >> graph_];

            kind_  %= kw["digraph"] >> attr(GraphKind::directed)   [ set_arrow_(px::val("->")) ]
                    | kw["graph"]   >> attr(GraphKind::undirected) [ set_arrow_(px::val("--")) ]
                    ;

            graph_    = -ID_ >> stmt_list;
            subgraph_ = -(kw["subgraph"] >> -ID_) >> stmt_list;

            string_   = '"' >> *('\' >> char_ | ~char_('"')) >> '"';
            ID_       = string_ | +char_("a-zA-Z0-9_");

            stmt_list = '{' >> *(stmt >> -lit(';')) >> '}';

            stmt      = attr_stmt
                      | attribute
                      | node_stmt
                      | edge_stmt
                      ;

            attr_stmt = kw[attr_group] >> attr_list;

            attribute = ID_ >> '=' >> ID_;

            node_stmt = node_id >> -attr_list >> !arrow_;

            edge_stmt
                = (node_id | subgraph_) % arrow_ >> -attr_list
                ;

            a_list    = '[' >> *(attribute >> -omit[char_(",;")]) >> ']';
            attr_list = +a_list;

            node_id 
                = ID_ >> (
                        (attr(Ast::Id{}))              >> (':' >> kw[compass_pt]) >> !lit(':')
                      | (':' >> ID_ | attr(Ast::Id{})) >> (':' >> kw[compass_pt] | attr(Ast::CompassPoint::_))
                )
                ;

            BOOST_SPIRIT_DEBUG_NODES(
                 (graph_) (subgraph_)
                 (a_list) (attr_list)
                 (stmt) (attr_stmt) (attribute) (node_stmt) (edge_stmt) (stmt_list)
                 (node_id)
                 (start)(kind_)(ID_)(string_)
            )
        }

      private:
        ////////////////////////
        using Skipper = qi::space_type;

        //////////////////////////////
        // Arrows depend on GraphKind
        qi::symbols<const char> arrow_;

        struct set_arrow_t { // allow dynamic setting
            qi::symbols<const char>& _ref;
            void operator()(const char* op) const { _ref.clear(); _ref.add(op); }
        };
        px::function<set_arrow_t> set_arrow_ { {arrow_} };

        ////////////////////////
        // enums using symbols<>
        struct AttrGroup : qi::symbols<const char, Ast::AttrStmt::Group> {
            AttrGroup() { add
                ("graph", Ast::AttrStmt::Group::graph)
                ("node", Ast::AttrStmt::Group::node)
                ("edge", Ast::AttrStmt::Group::edge);
            }
        } attr_group;

        struct CompassPoint : qi::symbols<const char, Ast::CompassPoint> {
            CompassPoint() { add
                ("n",  Ast::CompassPoint::n)
                ("ne", Ast::CompassPoint::ne)
                ("e",  Ast::CompassPoint::e)
                ("se", Ast::CompassPoint::se)
                ("s",  Ast::CompassPoint::s)
                ("sw", Ast::CompassPoint::sw)
                ("w",  Ast::CompassPoint::w)
                ("nw", Ast::CompassPoint::nw)
                ("c",  Ast::CompassPoint::c)
                ("_",  Ast::CompassPoint::_);
            }
        } compass_pt;

        ////////////////////////
        // productions
        qi::rule<It, Ast::Graph(),     Skipper> graph_, subgraph_;
        qi::rule<It, Ast::AList(),     Skipper> a_list;
        qi::rule<It, Ast::AttrList(),  Skipper> attr_list;
        qi::rule<It, Ast::NodeRef(),   Skipper> node_id; // misnomer

        qi::rule<It, Ast::Stmt(),      Skipper> stmt;
        qi::rule<It, Ast::AttrStmt(),  Skipper> attr_stmt;
        qi::rule<It, Ast::Attr(),      Skipper> attribute;
        qi::rule<It, Ast::NodeStmt(),  Skipper> node_stmt;
        qi::rule<It, Ast::EdgeStmt(),  Skipper> edge_stmt;

        qi::rule<It, Ast::StmtList(),  Skipper> stmt_list;

        // implicit lexemes
        using GraphKind = Ast::GraphKind;
        qi::rule<It, Ast::GraphViz()> start;
        qi::rule<It, GraphKind()> kind_;
        qi::rule<It, Ast::Id()> ID_;
        qi::rule<It, std::string()> string_;
    };
}

DEMO TIME

In fact, this part already parses GraphViz documents. No online compiler was willing to accept this (exceeding the resource limits). Here's the fully sample from this stage: https://wandbox.org/permlink/AYmxpD6lzOdhOeiS

Given the following sample input, exercising as many of the edge cases I could think of at the time:

digraph G {
    graph [rankdir = LR];

    node[shape=record];
    Bar[label="{ \"Bar\"|{<p1>pin 1|<p2>     2|<p3>     3|<p4>     4|<p5>     5} }"];
    Foo[label="{ {<data0>data0|<data1>data1|<data2>data2|<data3>data3|<data4>data4}|\"Foo\" |{<out0>out0|<out1>out1|<out2>out2|<GND>gnd|<ex0>ex0|<hi>hi|<lo>lo} }"];

    Bew[label="{ {<clk>clk|<syn>syn|<mux0>mux0|<mux1>mux1|<signal>signal}|\"Bew\" |{<out0>out0|<out1>out1|<out2>out2} }"];
    Bar:p1 -> Foo:data0;
    Bar:p2 -> Foo:data1;
    Bar:p3 -> Foo:data2;
    Bar:p4 -> Foo:data3;
    Bar:p5 -> Foo:data4;
    hijacked;

    Foo:out0 -> Bew:mux0;
    Foo:out1 -> Bew:mux1;
    Bew:clk -> Foo:ex0;

    Gate[label="{ {<a>a|<b>b}|OR|{<ab>a\|b} }"];

    Foo:hi -> Gate:a;
    Foo:lo -> Gate:b;
    Gate:ab -> Bew:signal;
    subgraph cluster1 {
        graph [
        label=G1];
        2;
        3;
        2 -> 4;
        3 -> 9;
        3 -> 12;
        9 -> 11;
        9 -> 10;
        10 -> 3;
    }

    subgraph cluster2 {
        graph [label=G2];
        10 -> 3;
        more;
        subgraph clusterNested {
            graph [label=nested];
            innermost;
            hijacked[shape=diamond];
        }
    }

    subgraph cluster1 {
        graph [label=G1_override];
        11 -> 4;
        last;
        hijacked;
        subgraph clusterNested {
            graph [label="can override nested?"];
            {
                unnested;
                first_override;
            } [color=red]
        };

    }

    10[shape=circle][color=red];
    10[shape=circle color=red];
    10[shape=circle; color=red,];

    subgraph clusterNested {
        graph [label="can't override nested"];
        unnested;
        second_override;
    }

    more -> last;
}

The output, from my machine (with full debug info in pastebin)

Parse success
(0 directed ( G {(graph {["rankdir"="LR"; ];
                  });
              (node {["shape"="record"; ];
               });
              ((Bar    _) {["label"="{ \"Bar\"|{<p1>pin 1|<p2>     2|<p3>     3|<p4>     4|<p5>     5} }"; ];
               });
              ((Foo    _) {["label"="{ {<data0>data0|<data1>data1|<data2>data2|<data3>data3|<data4>data4}|\"Foo\" |{<out0>out0|<out1>out1|<out2>out2|<GND>gnd|<ex0>ex0|<hi>hi|<lo>lo} }"; ];
               });
              ((Bew    _) {["label"="{ {<clk>clk|<syn>syn|<mux0>mux0|<mux1>mux1|<signal>signal}|\"Bew\" |{<out0>out0|<out1>out1|<out2>out2} }"; ];
               });
              ({(Bar p1    _);
               (Foo data0  _);
               } {});
              ({(Bar p2    _);
               (Foo data1  _);
               } {});
              ({(Bar p3    _);
               (Foo data2  _);
               } {});
              ({(Bar p4    _);
               (Foo data3  _);
               } {});
              ({(Bar p5    _);
               (Foo data4  _);
               } {});
              ((hijacked   _) {});
              ({(Foo out0  _);
               (Bew mux0   _);
               } {});
              ({(Foo out1  _);
               (Bew mux1   _);
               } {});
              ({(Bew clk   _);
               (Foo ex0    _);
               } {});
              ((Gate   _) {["label"="{ {<a>a|<b>b}|OR|{<ab>a|b} }"; ];
               });
              ({(Foo hi    _);
               (Gate a     _);
               } {});
              ({(Foo lo    _);
               (Gate b     _);
               } {});
              ({(Gate ab   _);
               (Bew signal     _);
               } {});
              ((subgraph   _) {});
              ((cluster1   _) {});
              ({(-- {(graph {["label"="G1"; ];
                      });
                 ((2   _) {});
                 ((3   _) {});
                 ({(2      _);
                  (4   _);
                  } {});
                 ({(3      _);
                  (9   _);
                  } {});
                 ({(3      _);
                  (12      _);
                  } {});
                 ({(9      _);
                  (11      _);
                  } {});
                 ({(9      _);
                  (10      _);
                  } {});
                 ({(10     _);
                  (3   _);
                  } {});
              });
              } {});
              ((subgraph   _) {});
              ((cluster2   _) {});
              ({(-- {(graph {["label"="G2"; ];
                      });
                 ({(10     _);
                  (3   _);
                  } {});
                 ((more    _) {});
                 ((subgraph    _) {});
                 ((clusterNested   _) {});
                 ({(-- {(graph {["label"="nested"; ];
                         });
                    ((innermost    _) {});
                    ((hijacked     _) {["shape"="diamond"; ];
                     });
                    });
                  } {});
                 });
               } {});
              ((subgraph   _) {});
              ((cluster1   _) {});
              ({(-- {(graph {["label"="G1_override"; ];
                      });
                 ({(11     _);
                  (4   _);
                  } {});
                 ((last    _) {});
                 ((hijacked    _) {});
                 ((subgraph    _) {});
                 ((clusterNested   _) {});
                 ({(-- {(graph {["label"="can override nested?"; ];
                         });
                    ({(-- {((unnested      _) {});
                       ((first_override    _) {});
                       });
                     } {["color"="red"; ];
                     });
                    });
                  } {});
                 });
               } {});
              ((10     _) {["shape"="circle"; ];
               ["color"="red"; ];
               });
              ((10     _) {["color"="red"; "shape"="circle"; ];
               });
              ((10     _) {["color"="red"; "shape"="circle"; ];
               });
              ((subgraph   _) {});
              ((clusterNested      _) {});
              ({(-- {(graph {["label"="can't override nested"; ];
                      });
                 ((unnested    _) {});
                 ((second_override     _) {});
                 });
               } {});
              ({(more      _);
               (last   _);
               } {});
}))
Remaining unparsed input: '
'

¹ Boost Spirit: "Semantic actions are evil"?

² 我将这种复杂性分类 "Impedance Mismatch",这是我最初从对象关系映射框架中学到的术语