聚类后​​的聚类分配问题

Problems with cluster assignment after clustering

我在理解 k 均值聚类中的聚类分配时遇到问题。具体来说,我知道该点已分配给最近的集群(到集群中心的最短距离),但我无法重现结果。详情如下。

假设我有一个数据框 df1:

set.seed(16)
df1 = data.frame(matrix(sample(1:50, replace = T), ncol=10, nrow=10000))
head(df1, n=4)

  X1 X2 X3 X4 X5 X6 X7 X8 X9 X10
1 35 35 35 35 35 35 35 35 35  35
2 13 13 13 13 13 13 13 13 13  13
3 23 23 23 23 23 23 23 23 23  23
4 12 12 12 12 12 12 12 12 12  12

我想在该数据框上执行 k 均值聚类(带缩放):

for_clst_km = scale(df1, center=F) #standardization with z-scores

kclust = 6 #number of clusters
Clusters <- kmeans(for_clst_km, kclust)

聚类完成后,我可以将聚类分配给原始数据框:

df1$cluster = Clusters$cluster

出于测试目的,我们选择 3 号集群。

library(dplyr)
cluster3 = df1 %>% filter(cluster == 3)

因为我想先缩放 cluster3,所以我需要删除 cluster 列,然后再执行 z 标准化:

cluster3$cluster = NULL

cluster3_1 = (cluster3-colMeans(df1))/apply(df1,2,sd)

现在,当我在 cluster3_1 中缩放值时,我可以计算到每个集群中心点的距离:

centroids = data.matrix(Clusters$centers)

dist_to_clust1 = apply(cluster3_1, 1, function(x) sqrt(sum((x-centroids[1,])^2)))
dist_to_clust2 = apply(cluster3_1, 1, function(x) sqrt(sum((x-centroids[2,])^2)))
dist_to_clust3 = apply(cluster3_1, 1, function(x) sqrt(sum((x-centroids[3,])^2)))
dist_to_clust4 = apply(cluster3_1, 1, function(x) sqrt(sum((x-centroids[4,])^2)))
dist_to_clust5 = apply(cluster3_1, 1, function(x) sqrt(sum((x-centroids[5,])^2)))
dist_to_clust6 = apply(cluster3_1, 1, function(x) sqrt(sum((x-centroids[6,])^2)))

dist_to_clust = cbind(dist_to_clust1, dist_to_clust2, dist_to_clust3, dist_to_clust4, dist_to_clust5, dist_to_clust6)

最后,在观察到每个集群的距离后,很明显我做错了什么。例如,查看 第五行 我发现该点最接近 cluster 4 (例如,这是最小值)。

head(dist_to_clust)

     dist_to_clust1 dist_to_clust2 dist_to_clust3 dist_to_clust4 dist_to_clust5 dist_to_clust6
[1,]      11.015929      11.116591      10.946547      11.173597      11.034535      10.968986
[2,]      13.136060      12.848511      12.967084      13.379930      12.840414      12.861085
[3,]      13.681588      13.314994      13.492713      13.942535      13.322293      13.360695
[4,]      10.506083      10.725233      10.467843      10.636465      10.621233      10.529714
[5,]       2.157906       5.392285       3.120574       1.168265       4.855553       4.197457
[6,]      11.015929      11.116591      10.946547      11.173597      11.034535      10.968986

我认为缩放方法有误。我不确定我是否真的可以用整个数据框的均值和标准差来缩放集群 3 个点。

能否请您分享您的想法,我做错了什么? 非常感谢!

您手写的缩放代码已损坏。 检查结果数据的标准偏差,它不是 1.

你为什么不直接使用

cluster3 = for_clst_km %>% filter(cluster == 3)

根据我在交叉验证时的回答:


是因为df-colmeans(df)并没有按照你的想法去做。

让我们试试代码:

a=matrix(1:9,nrow=3)

     [,1] [,2] [,3]
[1,]    1    4    7
[2,]    2    5    8
[3,]    3    6    9

colMeans(a)

[1] 2 5 8

a-colMeans(a)

     [,1] [,2] [,3]
[1,]   -1    2    5
[2,]   -3    0    3
[3,]   -5   -2    1

apply(a,2,function(x) x-mean(x))

     [,1] [,2] [,3]
[1,]   -1   -1   -1
[2,]    0    0    0
[3,]    1    1    1

你会发现 a-colMeans(a) 做的事情与 apply(a,2,function(x) x-mean(x)) 不同,这正是你想要居中的。

你可以写一个 apply 来为你做完整的自动缩放:

apply(a,2,function(x) (x-mean(x))/sd(x))

     [,1] [,2] [,3]
[1,]   -1   -1   -1
[2,]    0    0    0
[3,]    1    1    1

scale(a)

     [,1] [,2] [,3]
[1,]   -1   -1   -1
[2,]    0    0    0
[3,]    1    1    1
attr(,"scaled:center")
[1] 2 5 8
attr(,"scaled:scale")
[1] 1 1 1

但是这样做没有意义,因为 scale 会为您完成。 :)


此外,要尝试聚类:

set.seed(16)
nc=10
nr=10000
# Make sure you draw enough samples: There was extreme periodicity in your sampling
df1 = matrix(sample(1:50, size=nr*nc,replace = T), ncol=nc, nrow=nr)
head(df1, n=4)

for_clst_km = scale(df1) #standardization with z-scores
nclust = 4 #number of clusters
Clusters <- kmeans(for_clst_km, nclust)

# For extracting scaled values: They are already available in for_clst_km
cluster3_sc=for_clst_km[Clusters$cluster==3,]

# Simplify code by putting distance in function
distFun=function(mat,centre) apply(mat, 1, function(x) sqrt(sum((x-centre)^2)))

centroids=Clusters$centers
dists=matrix(nrow=nrow(cluster3_sc),ncol=nclust) # Allocate matrix
for(d in 1:nclust) dists[,d]=distFun(cluster3_sc,centroids[d,])  # Calculate observation distances to centroid d=1..nclust

whichMins=apply(dists,1,which.min) # Calculate the closest centroid per observation
table(whichMins) # Tabularize

> table(whichMins)
whichMins
   3 
2532 

HTH 手,
卡尔