为什么不同的初始点会导致套索优化(凸)的不同结果?

Why should different initial points lead to different results for lasso optimization (which is convex)?

我正在尝试对具有 950 个样本和大约 5000 个特征的数据使用套索优化。套索函数是 $(1 / (2 * numberofsamples)) * ||y - Xw||^2_2 + alpha * ||w||_1$。一旦我尝试通过初始化进行最小化,我得到完全不同的 w 很奇怪,因为套索是凸的,初始化不应该影响结果。这是带初始化和不带初始化的套索的结果。 tol 是公差。如果 w 的变化低于公差,则收敛已经发生。

tol=0.00000001 
#####  lasso model errors  ##### 


gene: 5478 matrix error: 0.069611732213 
with initialization: alpha: 1e-20 promotion: -3.58847815733e-13 
coef: [-0.00214732 -0.00509795  0.00272167 -0.00651548 -0.00164646 -0.00115342 
  0.00553346  0.01047653  0.00139832] 
without initialization: alpha: 1e-20  promotion: -19.0735249749 
coef: [-0.03650629  0.08992003 -0.01287155  0.03203973  0.1567577  -0.03708655 
-0.13710957 -0.01252736 -0.21710334] 


with initialization: alpha: 1e-15 promotion: 1.06179081478e-10 
coef: [-0.00214732 -0.00509795  0.00272167 -0.00651548 -0.00164646 -0.00115342 
  0.00553346  0.01047653  0.00139832] 
without initialization: alpha: 1e-15  promotion: -19.0735249463 
coef: [-0.03650629  0.08992003 -0.01287155  0.03203973  0.1567577  -0.03708655 
-0.13710957 -0.01252736 -0.21710334] 



Warning (from warnings module): 
  File "/usr/local/lib/python2.7/site-packages/sklearn/linear_model/coordinate_descent.py", line 491 
    ConvergenceWarning) 
ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Fitting data with very small alpha may cause precision problems. 
with initialization: alpha: 1e-10  promotion: 0.775144987537 
coef: [-0.00185139 -0.0048819   0.00218349 -0.00622618 -0.00145647 -0.00115857 
  0.0055919   0.01072924  0.00043773] 
without initialization: alpha: 1e-10 promotion: -17.8649603301 
coef: [-0.03581581  0.0892119  -0.01232829  0.03151441  0.15606195 -0.03734093 
-0.13604286 -0.01247732 -0.21233529] 


with initialization: alpha: 1e-08 promotion: -5.87121366314 
coef: [-0.          0.         -0.         -0.01064477  0.         -0.00116167 
-0.          0.01114746  0.        ] 
without initialization: alpha: 1e-08  promotion: 4.05593555389 
coef: [ 0.          0.04505117  0.00668611  0.          0.07731668 -0.03537848 
-0.03151995  0.         -0.00310122] 


max promote: 
4.05593555389 

为了实现,我使用了 python 包 sklearn.linear_model 的套索函数。我也更改了数据,但新数据的结果也随着初始化而改变。我觉得这很奇怪,但我无法分析它并找到解释。

这是我的代码中与套索相关的部分。我的数据是基因表达。我在规范化和非规范化数据上测试代码。在他们两个上,初始点都不同。

    alpha_lasso = [1e-20,1e-15, 1e-10, 1e-8, 1e-7,1e-6,1e-5,1e-4, 1e-3,1e-2, 1, 5 ,20]

    lassoreg = Lasso(alpha=alpha_lasso[i],warm_start=True,tol=0.00000001,max_iter=100000)
    lassoreg.coef_ = mybeta[:,j-c]
    lassoreg.fit(train[:,predictors],train[:,y])
    y_train_pred = lassoreg.predict(A)#train[:,predictors])
    y_test_pred = lassoreg.predict(C)#test[:,predictors])

这也是我的全部代码:

import pandas as pd
import random
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec
import os
from GEOparse.GEOTypes import (GSE, GSM, GPL, GDS,
                               GDSSubset, GEODatabase,
                               DataIncompatibilityException,
                               NoMetadataException,
                               )
import GEOparse as GEO
import numpy as np
import copy
import sys
import math
from sklearn import linear_model
from sklearn.linear_model import Lasso
from sklearn.linear_model import LassoLars
from sklearn.linear_model import MultiTaskLassoCV
from sklearn.linear_model import coordinate_descent
from sklearn.linear_model import lasso_path, enet_path


import numpy as np
from sklearn.base import BaseEstimator, RegressorMixin
from copy import deepcopy

miss_percent = 0.1
alpha_lasso = [1e-20,1e-15, 1e-10, 1e-8, 1e-7,1e-6,1e-5,1e-4, 1e-3,1e-2, 1, 5 ,20]
mins=[]
maxs=[]
mean_err=[]
alphas=[]

mins1=[]
maxs1=[]
mean_err1=[]
alphas1=[]

#mnist = input_data.read_data_sets('../../MNIST_data', one_hot=True)
def getdata(percent):
    gsd = GEO.get_GEO(geo="GDS4971")
    ngsd = gsd.table.replace('null', np.NaN)
    ngsd = ngsd.dropna(axis=0, how='any')
    ngsd =ngsd.transpose()
    dataarray = ngsd.values
    data = np.delete(dataarray, [0,1], 0)

    x = data.astype(np.float)
    r_df = x.shape[0]
    c_df = x.shape[1]
    r = int(r_df-math.sqrt((1-percent)*r_df))
    c = int(c_df-math.sqrt((1-percent)*c_df))
    train = x[0:r,:]
    test = x[r:r_df,:]
    return x,train,test,r_df,c_df,r,c


genedata,train,test,r_df,c_df,r,c = getdata(miss_percent)
predictors = range(0,c)

promotion =[[0.001 for x in range(len(alpha_lasso))] for y in range(c_df-c)]
promotion = np.asmatrix(promotion)
#error of ax-b 
error_aw_b = [[0.001 for x in range(len(alpha_lasso))] for y in range(c_df-c)]
error_aw_b = np.asmatrix(error_aw_b)
#error of cw-x
error_cw_x = [[0.001 for x in range(len(alpha_lasso))] for y in range(c_df-c)]
error_cw_x = np.asmatrix(error_cw_x)
#error of lasso function
error_lasso = [[0.001 for x in range(len(alpha_lasso))] for y in range(c_df-c)]
error_lasso = np.asmatrix(error_lasso)

promotion1 =[[0.001 for x in range(len(alpha_lasso))] for y in range(c_df-c)]
promotion1 = np.asmatrix(promotion)
#error of ax-b 
error_aw_b1 = [[0.001 for x in range(len(alpha_lasso))] for y in range(c_df-c)]
error_aw_b1 = np.asmatrix(error_aw_b)
#error of cw-x
error_cw_x1 = [[0.001 for x in range(len(alpha_lasso))] for y in range(c_df-c)]
error_cw_x1 = np.asmatrix(error_cw_x)
#error of lasso function
error_lasso1 = [[0.001 for x in range(len(alpha_lasso))] for y in range(c_df-c)]
error_lasso1 = np.asmatrix(error_lasso)


mybeta = #any initialization

######################              LASSO              #####################
print("#####  lasso model errors  #####")
for j in range(c,c+1):
    mean_err=[]
    print("\n")
    y=j
    eachMeanError= math.sqrt((np.power(errorC[:,j-c],2)).sum()/(r_df-r))
    print("gene: "+str(j)+ " matrix error: "+ str(eachMeanError))
    for i in range(0,4):#len(alpha_lasso)):
        lassoreg = Lasso(alpha=alpha_lasso[i],warm_start=True,tol=0.00000001,max_iter=100000)
        lassoreg.coef_ = mybeta[:,j-c]
        lassoreg.fit(train[:,predictors],train[:,y])
        y_train_pred = lassoreg.predict(A)#train[:,predictors])
        y_test_pred = lassoreg.predict(C)#test[:,predictors])
        y_lasso_func = (1/(2*r))*sum(y_train_pred)+sum(abs(lassoreg.coef_))
        ##################      RMS     ##################
        error_aw_b[j-c,i] = math.sqrt(sum((y_train_pred-train[:,y])**2)/r) 
        error_lasso[j-c,i] = y_lasso_func
        error_cw_x[j-c,i] = math.sqrt(sum((y_test_pred-test[:,y])**2)/(r_df-r)) 

        mins.extend([(error_cw_x.min())])
        maxs.extend([(error_cw_x.max())])

        promotion[j-c,i] = (((eachMeanError-error_cw_x[j-c,i])/eachMeanError)*100)
        print("alpha: "+str(alpha_lasso[i])+ " error_aw_b: "+str(error_aw_b[j-c,i]) + " error_cw_x: " + str(error_cw_x[j-c,i])+" error_lasso: "+str(error_lasso[j-c,i]) + " promotion: " + str(promotion[j-c,i]) )
        print("coef: " + str(lassoreg.coef_[1:10]))

        lassoreg1 = Lasso(alpha=alpha_lasso[i],tol=0.00000001,max_iter=100000)
        lassoreg1.fit(train[:,predictors],train[:,y])
        y_train_pred1 = lassoreg1.predict(A)#train[:,predictors])
        y_test_pred1 = lassoreg1.predict(C)#test[:,predictors])
        y_lasso_func1 = (1/(2*r))*sum(y_train_pred1)+sum(abs(lassoreg1.coef_))
        ##################      RMS     ##################
        error_aw_b1[j-c,i] = math.sqrt(sum((y_train_pred1-train[:,y])**2)/r) 
        error_lasso1[j-c,i] = y_lasso_func1
        error_cw_x1[j-c,i] = math.sqrt(sum((y_test_pred1-test[:,y])**2)/(r_df-r)) 
        mins1.extend([(error_cw_x1.min())])
        maxs1.extend([(error_cw_x1.max())])

        promotion1[j-c,i] = (((eachMeanError-error_cw_x1[j-c,i])/eachMeanError)*100)
        print("alpha: "+str(alpha_lasso[i])+ " error_aw_b: "+str(error_aw_b1[j-c,i]) + " error_cw_x: " + str(error_cw_x1[j-c,i])+" error_lasso: "+str(error_lasso1[j-c,i]) + " promotion: " + str(promotion1[j-c,i]) )
        print("coef: " + str(lassoreg1.coef_[1:10]))
        print("\n")
    print("max promote:")
    print((promotion[j-c,:].max()))

f = open('analyse_col', 'wb')
np.save(f, [promotion,alphas,error_cw_x,mins,maxs])
f.close()

plt.plot(promotion[:,j-c])
plt.ylabel('coef for ')
plt.xlabel('each gene')
plt.show()

你有 M 个样本和 N 个特征,M=950 , N=5000

这里的要点是:但是当 p>n 时,套索标准不是严格凸的,因此它可能没有唯一的最小值。 reference

这会使优化变得有点复杂(请记住:它不是所有问题中最简单的,因为它本质上是非平滑的!)并且大多数求解器都会针对其他情况进行调整。

在你的情况下有一个明确的警告和建议:增加迭代次数!并确保您的 alphas 不会太小。不确定,你是如何初始化后者的,但如果那些 1e-15 量级是手工制作的,请重新考虑你的问题公式!

警告足以不将这些解决方案视为优化解决方案(因此:我的套索对不同的初始化有不同的解决方案在技术上是不正确的;只有你的近似解决方案表现得像那样).