如何有效地计算 pandas 时间序列中的滚动唯一计数?
How to efficiently compute a rolling unique count in a pandas time series?
我有一个参观建筑物的时间序列。每个人都有一个唯一的 ID。对于时间序列中的每条记录,我想知道过去 365 天访问该建筑物的唯一人数(即 365 天 window 的滚动唯一人数)。
pandas
似乎没有用于此计算的内置方法。当有大量唯一身份访问者 and/or a large window 时,计算变得非常密集。 (实际数据比这个例子大。)
有没有比我下面所做的更好的计算方法?我不确定为什么我制作的快速方法 windowed_nunique
(在 "Speed test 3" 下)被关闭了 1.
感谢您的帮助!
相关链接:
- 来源 Jupyter 笔记本:https://gist.github.com/stharrold/17589e6809d249942debe3a5c43d38cc
- 相关
pandas
问题:https://github.com/pandas-dev/pandas/issues/14336
初始化
In [1]:
# Import libraries.
import pandas as pd
import numba
import numpy as np
In [2]:
# Create data of people visiting a building.
np.random.seed(seed=0)
dates = pd.date_range(start='2010-01-01', end='2015-01-01', freq='D')
window = 365 # days
num_pids = 100
probs = np.linspace(start=0.001, stop=0.1, num=num_pids)
df = pd\
.DataFrame(
data=[(date, pid)
for (pid, prob) in zip(range(num_pids), probs)
for date in np.compress(np.random.binomial(n=1, p=prob, size=len(dates)), dates)],
columns=['Date', 'PersonId'])\
.sort_values(by='Date')\
.reset_index(drop=True)
print("Created data of people visiting a building:")
df.head() # 9181 rows × 2 columns
Out[2]:
Created data of people visiting a building:
| | Date | PersonId |
|---|------------|----------|
| 0 | 2010-01-01 | 76 |
| 1 | 2010-01-01 | 63 |
| 2 | 2010-01-01 | 89 |
| 3 | 2010-01-01 | 81 |
| 4 | 2010-01-01 | 7 |
速度参考
In [3]:
%%timeit
# This counts the number of people visiting the building, not the number of unique people.
# Provided as a speed reference.
df.rolling(window='{:d}D'.format(window), on='Date').count()
3.32 ms ± 124 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
速度测试 1
In [4]:
%%timeit
df.rolling(window='{:d}D'.format(window), on='Date').apply(lambda arr: pd.Series(arr).nunique())
2.42 s ± 282 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
In [5]:
# Save results as a reference to check calculation accuracy.
ref = df.rolling(window='{:d}D'.format(window), on='Date').apply(lambda arr: pd.Series(arr).nunique())['PersonId'].values
速度测试 2
In [6]:
# Define a custom function and implement a just-in-time compiler.
@numba.jit(nopython=True)
def nunique(arr):
return len(set(arr))
In [7]:
%%timeit
df.rolling(window='{:d}D'.format(window), on='Date').apply(nunique)
430 ms ± 31.1 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
In [8]:
# Check accuracy of results.
test = df.rolling(window='{:d}D'.format(window), on='Date').apply(nunique)['PersonId'].values
assert all(ref == test)
速度测试 3
In [9]:
# Define a custom function and implement a just-in-time compiler.
@numba.jit(nopython=True)
def windowed_nunique(dates, pids, window):
r"""Track number of unique persons in window,
reading through arrays only once.
Args:
dates (numpy.ndarray): Array of dates as number of days since epoch.
pids (numpy.ndarray): Array of integer person identifiers.
window (int): Width of window in units of difference of `dates`.
Returns:
ucts (numpy.ndarray): Array of unique counts.
Raises:
AssertionError: Raised if `len(dates) != len(pids)`
Notes:
* May be off by 1 compared to `pandas.core.window.Rolling`
with a time series alias offset.
"""
# Check arguments.
assert dates.shape == pids.shape
# Initialize counters.
idx_min = 0
idx_max = dates.shape[0]
date_min = dates[idx_min]
pid_min = pids[idx_min]
pid_max = np.max(pids)
pid_cts = np.zeros(pid_max, dtype=np.int64)
pid_cts[pid_min] = 1
uct = 1
ucts = np.zeros(idx_max, dtype=np.int64)
ucts[idx_min] = uct
idx = 1
# For each (date, person)...
while idx < idx_max:
# If person count went from 0 to 1, increment unique person count.
date = dates[idx]
pid = pids[idx]
pid_cts[pid] += 1
if pid_cts[pid] == 1:
uct += 1
# For past dates outside of window...
while (date - date_min) > window:
# If person count went from 1 to 0, decrement unique person count.
pid_cts[pid_min] -= 1
if pid_cts[pid_min] == 0:
uct -= 1
idx_min += 1
date_min = dates[idx_min]
pid_min = pids[idx_min]
# Record unique person count.
ucts[idx] = uct
idx += 1
return ucts
In [10]:
# Cast dates to integers.
df['DateEpoch'] = (df['Date'] - pd.to_datetime('1970-01-01'))/pd.to_timedelta(1, unit='D')
df['DateEpoch'] = df['DateEpoch'].astype(int)
In [11]:
%%timeit
windowed_nunique(
dates=df['DateEpoch'].values,
pids=df['PersonId'].values,
window=window)
107 µs ± 63.5 µs per loop (mean ± std. dev. of 7 runs, 1 loop each)
In [12]:
# Check accuracy of results.
test = windowed_nunique(
dates=df['DateEpoch'].values,
pids=df['PersonId'].values,
window=window)
# Note: Method may be off by 1.
assert all(np.isclose(ref, np.asarray(test), atol=1))
In [13]:
# Show where the calculation doesn't match.
print("Where reference ('ref') calculation of number of unique people doesn't match 'test':")
df['ref'] = ref
df['test'] = test
df.loc[df['ref'] != df['test']].head() # 9044 rows × 5 columns
Out[13]:
Where reference ('ref') calculation of number of unique people doesn't match 'test':
| | Date | PersonId | DateEpoch | ref | test |
|----|------------|----------|-----------|------|------|
| 78 | 2010-01-19 | 99 | 14628 | 56.0 | 55 |
| 79 | 2010-01-19 | 96 | 14628 | 56.0 | 55 |
| 80 | 2010-01-19 | 88 | 14628 | 56.0 | 55 |
| 81 | 2010-01-20 | 94 | 14629 | 56.0 | 55 |
| 82 | 2010-01-20 | 48 | 14629 | 57.0 | 56 |
如果您只想要过去 365 天内进入建筑物的唯一人员的数量,您可以首先使用 .loc 限制过去 365 天的数据集:
df = df.loc[df['date'] > '2016-09-28',:]
并且使用 groupby 时,你会得到与进来的唯一人员一样多的行,如果你按计数来计算,你还会得到他们进来的次数:
df = df.groupby('PersonID').count()
这似乎适用于您的问题,但也许我弄错了。
祝你有美好的一天
非常接近你在种子测试二中的时间,但作为一个衬垫,在一年内重新采样。
df.resample('AS',on='Date')['PersonId'].expanding(0).apply(lambda x: np.unique(x).shape[0])
时间结果
1 loop, best of 3: 483 ms per loop
我在快速方法 windowed_nunique
中有 2 个错误,现在在下面 windowed_nunique_corrected
中更正:
- 用于存储 window、
pid_cts
中每个人 ID 的唯一计数的数组的大小太小。
- 因为 window 的前缘和后缘包括整数天,所以
date_min
应该在 (date - date_min + 1) > window
时更新。
相关链接:
- 来源 Jupyter Notebook 已更新解决方案:https://gist.github.com/stharrold/17589e6809d249942debe3a5c43d38cc
In [14]:
# Define a custom function and implement a just-in-time compiler.
@numba.jit(nopython=True)
def windowed_nunique_corrected(dates, pids, window):
r"""Track number of unique persons in window,
reading through arrays only once.
Args:
dates (numpy.ndarray): Array of dates as number of days since epoch.
pids (numpy.ndarray): Array of integer person identifiers.
Required: min(pids) >= 0
window (int): Width of window in units of difference of `dates`.
Required: window >= 1
Returns:
ucts (numpy.ndarray): Array of unique counts.
Raises:
AssertionError: Raised if not...
* len(dates) == len(pids)
* min(pids) >= 0
* window >= 1
Notes:
* Matches `pandas.core.window.Rolling`
with a time series alias offset.
"""
# Check arguments.
assert len(dates) == len(pids)
assert np.min(pids) >= 0
assert window >= 1
# Initialize counters.
idx_min = 0
idx_max = dates.shape[0]
date_min = dates[idx_min]
pid_min = pids[idx_min]
pid_max = np.max(pids) + 1
pid_cts = np.zeros(pid_max, dtype=np.int64)
pid_cts[pid_min] = 1
uct = 1
ucts = np.zeros(idx_max, dtype=np.int64)
ucts[idx_min] = uct
idx = 1
# For each (date, person)...
while idx < idx_max:
# Lookup date, person.
date = dates[idx]
pid = pids[idx]
# If person count went from 0 to 1, increment unique person count.
pid_cts[pid] += 1
if pid_cts[pid] == 1:
uct += 1
# For past dates outside of window...
# Note: If window=3, it includes day0,day1,day2.
while (date - date_min + 1) > window:
# If person count went from 1 to 0, decrement unique person count.
pid_cts[pid_min] -= 1
if pid_cts[pid_min] == 0:
uct -= 1
idx_min += 1
date_min = dates[idx_min]
pid_min = pids[idx_min]
# Record unique person count.
ucts[idx] = uct
idx += 1
return ucts
In [15]:
# Cast dates to integers.
df['DateEpoch'] = (df['Date'] - pd.to_datetime('1970-01-01'))/pd.to_timedelta(1, unit='D')
df['DateEpoch'] = df['DateEpoch'].astype(int)
In [16]:
%%timeit
windowed_nunique_corrected(
dates=df['DateEpoch'].values,
pids=df['PersonId'].values,
window=window)
98.8 µs ± 41.3 µs per loop (mean ± std. dev. of 7 runs, 1 loop each)
In [17]:
# Check accuracy of results.
test = windowed_nunique_corrected(
dates=df['DateEpoch'].values,
pids=df['PersonId'].values,
window=window)
assert all(ref == test)
我有一个参观建筑物的时间序列。每个人都有一个唯一的 ID。对于时间序列中的每条记录,我想知道过去 365 天访问该建筑物的唯一人数(即 365 天 window 的滚动唯一人数)。
pandas
似乎没有用于此计算的内置方法。当有大量唯一身份访问者 and/or a large window 时,计算变得非常密集。 (实际数据比这个例子大。)
有没有比我下面所做的更好的计算方法?我不确定为什么我制作的快速方法 windowed_nunique
(在 "Speed test 3" 下)被关闭了 1.
感谢您的帮助!
相关链接:
- 来源 Jupyter 笔记本:https://gist.github.com/stharrold/17589e6809d249942debe3a5c43d38cc
- 相关
pandas
问题:https://github.com/pandas-dev/pandas/issues/14336
初始化
In [1]:
# Import libraries.
import pandas as pd
import numba
import numpy as np
In [2]:
# Create data of people visiting a building.
np.random.seed(seed=0)
dates = pd.date_range(start='2010-01-01', end='2015-01-01', freq='D')
window = 365 # days
num_pids = 100
probs = np.linspace(start=0.001, stop=0.1, num=num_pids)
df = pd\
.DataFrame(
data=[(date, pid)
for (pid, prob) in zip(range(num_pids), probs)
for date in np.compress(np.random.binomial(n=1, p=prob, size=len(dates)), dates)],
columns=['Date', 'PersonId'])\
.sort_values(by='Date')\
.reset_index(drop=True)
print("Created data of people visiting a building:")
df.head() # 9181 rows × 2 columns
Out[2]:
Created data of people visiting a building:
| | Date | PersonId |
|---|------------|----------|
| 0 | 2010-01-01 | 76 |
| 1 | 2010-01-01 | 63 |
| 2 | 2010-01-01 | 89 |
| 3 | 2010-01-01 | 81 |
| 4 | 2010-01-01 | 7 |
速度参考
In [3]:
%%timeit
# This counts the number of people visiting the building, not the number of unique people.
# Provided as a speed reference.
df.rolling(window='{:d}D'.format(window), on='Date').count()
3.32 ms ± 124 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
速度测试 1
In [4]:
%%timeit
df.rolling(window='{:d}D'.format(window), on='Date').apply(lambda arr: pd.Series(arr).nunique())
2.42 s ± 282 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
In [5]:
# Save results as a reference to check calculation accuracy.
ref = df.rolling(window='{:d}D'.format(window), on='Date').apply(lambda arr: pd.Series(arr).nunique())['PersonId'].values
速度测试 2
In [6]:
# Define a custom function and implement a just-in-time compiler.
@numba.jit(nopython=True)
def nunique(arr):
return len(set(arr))
In [7]:
%%timeit
df.rolling(window='{:d}D'.format(window), on='Date').apply(nunique)
430 ms ± 31.1 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
In [8]:
# Check accuracy of results.
test = df.rolling(window='{:d}D'.format(window), on='Date').apply(nunique)['PersonId'].values
assert all(ref == test)
速度测试 3
In [9]:
# Define a custom function and implement a just-in-time compiler.
@numba.jit(nopython=True)
def windowed_nunique(dates, pids, window):
r"""Track number of unique persons in window,
reading through arrays only once.
Args:
dates (numpy.ndarray): Array of dates as number of days since epoch.
pids (numpy.ndarray): Array of integer person identifiers.
window (int): Width of window in units of difference of `dates`.
Returns:
ucts (numpy.ndarray): Array of unique counts.
Raises:
AssertionError: Raised if `len(dates) != len(pids)`
Notes:
* May be off by 1 compared to `pandas.core.window.Rolling`
with a time series alias offset.
"""
# Check arguments.
assert dates.shape == pids.shape
# Initialize counters.
idx_min = 0
idx_max = dates.shape[0]
date_min = dates[idx_min]
pid_min = pids[idx_min]
pid_max = np.max(pids)
pid_cts = np.zeros(pid_max, dtype=np.int64)
pid_cts[pid_min] = 1
uct = 1
ucts = np.zeros(idx_max, dtype=np.int64)
ucts[idx_min] = uct
idx = 1
# For each (date, person)...
while idx < idx_max:
# If person count went from 0 to 1, increment unique person count.
date = dates[idx]
pid = pids[idx]
pid_cts[pid] += 1
if pid_cts[pid] == 1:
uct += 1
# For past dates outside of window...
while (date - date_min) > window:
# If person count went from 1 to 0, decrement unique person count.
pid_cts[pid_min] -= 1
if pid_cts[pid_min] == 0:
uct -= 1
idx_min += 1
date_min = dates[idx_min]
pid_min = pids[idx_min]
# Record unique person count.
ucts[idx] = uct
idx += 1
return ucts
In [10]:
# Cast dates to integers.
df['DateEpoch'] = (df['Date'] - pd.to_datetime('1970-01-01'))/pd.to_timedelta(1, unit='D')
df['DateEpoch'] = df['DateEpoch'].astype(int)
In [11]:
%%timeit
windowed_nunique(
dates=df['DateEpoch'].values,
pids=df['PersonId'].values,
window=window)
107 µs ± 63.5 µs per loop (mean ± std. dev. of 7 runs, 1 loop each)
In [12]:
# Check accuracy of results.
test = windowed_nunique(
dates=df['DateEpoch'].values,
pids=df['PersonId'].values,
window=window)
# Note: Method may be off by 1.
assert all(np.isclose(ref, np.asarray(test), atol=1))
In [13]:
# Show where the calculation doesn't match.
print("Where reference ('ref') calculation of number of unique people doesn't match 'test':")
df['ref'] = ref
df['test'] = test
df.loc[df['ref'] != df['test']].head() # 9044 rows × 5 columns
Out[13]:
Where reference ('ref') calculation of number of unique people doesn't match 'test':
| | Date | PersonId | DateEpoch | ref | test |
|----|------------|----------|-----------|------|------|
| 78 | 2010-01-19 | 99 | 14628 | 56.0 | 55 |
| 79 | 2010-01-19 | 96 | 14628 | 56.0 | 55 |
| 80 | 2010-01-19 | 88 | 14628 | 56.0 | 55 |
| 81 | 2010-01-20 | 94 | 14629 | 56.0 | 55 |
| 82 | 2010-01-20 | 48 | 14629 | 57.0 | 56 |
如果您只想要过去 365 天内进入建筑物的唯一人员的数量,您可以首先使用 .loc 限制过去 365 天的数据集:
df = df.loc[df['date'] > '2016-09-28',:]
并且使用 groupby 时,你会得到与进来的唯一人员一样多的行,如果你按计数来计算,你还会得到他们进来的次数:
df = df.groupby('PersonID').count()
这似乎适用于您的问题,但也许我弄错了。 祝你有美好的一天
非常接近你在种子测试二中的时间,但作为一个衬垫,在一年内重新采样。
df.resample('AS',on='Date')['PersonId'].expanding(0).apply(lambda x: np.unique(x).shape[0])
时间结果
1 loop, best of 3: 483 ms per loop
我在快速方法 windowed_nunique
中有 2 个错误,现在在下面 windowed_nunique_corrected
中更正:
- 用于存储 window、
pid_cts
中每个人 ID 的唯一计数的数组的大小太小。 - 因为 window 的前缘和后缘包括整数天,所以
date_min
应该在(date - date_min + 1) > window
时更新。
相关链接:
- 来源 Jupyter Notebook 已更新解决方案:https://gist.github.com/stharrold/17589e6809d249942debe3a5c43d38cc
In [14]:
# Define a custom function and implement a just-in-time compiler.
@numba.jit(nopython=True)
def windowed_nunique_corrected(dates, pids, window):
r"""Track number of unique persons in window,
reading through arrays only once.
Args:
dates (numpy.ndarray): Array of dates as number of days since epoch.
pids (numpy.ndarray): Array of integer person identifiers.
Required: min(pids) >= 0
window (int): Width of window in units of difference of `dates`.
Required: window >= 1
Returns:
ucts (numpy.ndarray): Array of unique counts.
Raises:
AssertionError: Raised if not...
* len(dates) == len(pids)
* min(pids) >= 0
* window >= 1
Notes:
* Matches `pandas.core.window.Rolling`
with a time series alias offset.
"""
# Check arguments.
assert len(dates) == len(pids)
assert np.min(pids) >= 0
assert window >= 1
# Initialize counters.
idx_min = 0
idx_max = dates.shape[0]
date_min = dates[idx_min]
pid_min = pids[idx_min]
pid_max = np.max(pids) + 1
pid_cts = np.zeros(pid_max, dtype=np.int64)
pid_cts[pid_min] = 1
uct = 1
ucts = np.zeros(idx_max, dtype=np.int64)
ucts[idx_min] = uct
idx = 1
# For each (date, person)...
while idx < idx_max:
# Lookup date, person.
date = dates[idx]
pid = pids[idx]
# If person count went from 0 to 1, increment unique person count.
pid_cts[pid] += 1
if pid_cts[pid] == 1:
uct += 1
# For past dates outside of window...
# Note: If window=3, it includes day0,day1,day2.
while (date - date_min + 1) > window:
# If person count went from 1 to 0, decrement unique person count.
pid_cts[pid_min] -= 1
if pid_cts[pid_min] == 0:
uct -= 1
idx_min += 1
date_min = dates[idx_min]
pid_min = pids[idx_min]
# Record unique person count.
ucts[idx] = uct
idx += 1
return ucts
In [15]:
# Cast dates to integers.
df['DateEpoch'] = (df['Date'] - pd.to_datetime('1970-01-01'))/pd.to_timedelta(1, unit='D')
df['DateEpoch'] = df['DateEpoch'].astype(int)
In [16]:
%%timeit
windowed_nunique_corrected(
dates=df['DateEpoch'].values,
pids=df['PersonId'].values,
window=window)
98.8 µs ± 41.3 µs per loop (mean ± std. dev. of 7 runs, 1 loop each)
In [17]:
# Check accuracy of results.
test = windowed_nunique_corrected(
dates=df['DateEpoch'].values,
pids=df['PersonId'].values,
window=window)
assert all(ref == test)