如何在张量流中为 ssd 网络加载和保存 Widerface 数据集?
How to load and save Widerface dataset for ssd network in tensorflow?
我想在 tensorflow 中为 ssd(单发多框检测器)网络加载和保存 Widerface 标签,但是 wider_face_train_bbx_gt
太复杂了。
如何在tensorflow中保存ssd网络的标签?
要加载数据集,我会向您解释如何在 TensorFlow 中使用 TensorPack(仅针对数据)执行此操作。
首先,我们需要包含边界框的 zip 文件和 mat 文件。以下部分基本上直接从zip文件和mat文件中读取
class RawWiderFaceReader(RNGDataFlow):
"""Read images directly from tar file without unpacking
boxes: left, top, width, height
"""
def __init__(self, matfile, zipfile):
super(RawWiderFaceReader, self).__init__()
self.matfile = matfile
self.zipfile = zipfile
self.subset = matfile.split('_')[-1].replace('.mat', '')
f = sio.loadmat(matfile)
events = [f['event_list'][i][0][0] for i in range(len(f['event_list']))]
raw_files = [f['file_list'][i][0] for i in range(len(f['file_list']))]
raw_bbx = [f['face_bbx_list'][i][0] for i in range(len(f['face_bbx_list']))]
col_files = []
for file, bbx in zip(raw_files, raw_bbx):
for filee, bbxe in zip(file, bbx):
col_files.append((filee[0][0], bbxe[0]))
self.col_files2 = []
for file, bbx in col_files:
for ev in events:
if file.startswith(ev.replace('--', '_')):
self.col_files2.append((str('WIDER_%s/images/' % self.subset + ev +
'/' + file + '.jpg').encode('ascii', 'ignore'), bbx))
break
def get_data(self):
with ZipFile(self.zipfile, 'r') as zip_hnd:
for fn, bbx in self.col_files2:
buf = zip_hnd.read('%s' % fn)
yield [buf, bbx]
它为您提供了一个生成器 get_data()
,其中 returns jpeg 编码图像和边界框。它的存储方式似乎很复杂,因为它是一个包含 Matlab 生成的边界框的文件。
要绘制边界框,您可以使用:
def draw_rect(img, top, left, bottom, right, rgb, margin=1):
m = margin
r, g, b = rgb
img[top:bottom, left - m:left + m, 0] = r
img[top:bottom, left - m:left + m, 1] = g
img[top:bottom, left - m:left + m, 2] = b
img[top:bottom, right - m:right + m, 0] = r
img[top:bottom, right - m:right + m, 1] = g
img[top:bottom, right - m:right + m, 2] = b
img[top - m:top + m, left:right, 0] = r
img[top - m:top + m, left:right, 1] = g
img[top - m:top + m, left:right, 2] = b
img[bottom - m:bottom + m, left:right, 0] = r
img[bottom - m:bottom + m, left:right, 1] = g
img[bottom - m:bottom + m, left:right, 2] = b
return img
整个脚本在这里:
https://gist.github.com/PatWie/a743d2349f388b27ed3ef783919c3882
在 pip install -U git+https://github.com/ppwwyyxx/tensorpack.git
之后,您可以通过
启动它
python data_sampler.py --zip /scratch/patwie/data/wider_face/WIDER_val.zip \
--mat wider_face_split/wider_face_val.mat \
--debug
要将其转换为 lmdb 文件,您可以使用其他参数。此处无需解压数据。
要使用数据,就像在脚本中:
from tensorpack import *
ds = LMDBDataPoint('/scratch/wieschol/data/wider_face/WIDER_train.lmdb', shuffle=True)
ds = RawWiderFaceReader(matfile=args.mat, zipfile=args.zip)
ds.reset_state()
for jpeg, bbx in ds.get_data():
rgb = cv2.imdecode(np.asarray(jpeg), cv2.IMREAD_COLOR)
我想在 tensorflow 中为 ssd(单发多框检测器)网络加载和保存 Widerface 标签,但是 wider_face_train_bbx_gt
太复杂了。
如何在tensorflow中保存ssd网络的标签?
要加载数据集,我会向您解释如何在 TensorFlow 中使用 TensorPack(仅针对数据)执行此操作。
首先,我们需要包含边界框的 zip 文件和 mat 文件。以下部分基本上直接从zip文件和mat文件中读取
class RawWiderFaceReader(RNGDataFlow):
"""Read images directly from tar file without unpacking
boxes: left, top, width, height
"""
def __init__(self, matfile, zipfile):
super(RawWiderFaceReader, self).__init__()
self.matfile = matfile
self.zipfile = zipfile
self.subset = matfile.split('_')[-1].replace('.mat', '')
f = sio.loadmat(matfile)
events = [f['event_list'][i][0][0] for i in range(len(f['event_list']))]
raw_files = [f['file_list'][i][0] for i in range(len(f['file_list']))]
raw_bbx = [f['face_bbx_list'][i][0] for i in range(len(f['face_bbx_list']))]
col_files = []
for file, bbx in zip(raw_files, raw_bbx):
for filee, bbxe in zip(file, bbx):
col_files.append((filee[0][0], bbxe[0]))
self.col_files2 = []
for file, bbx in col_files:
for ev in events:
if file.startswith(ev.replace('--', '_')):
self.col_files2.append((str('WIDER_%s/images/' % self.subset + ev +
'/' + file + '.jpg').encode('ascii', 'ignore'), bbx))
break
def get_data(self):
with ZipFile(self.zipfile, 'r') as zip_hnd:
for fn, bbx in self.col_files2:
buf = zip_hnd.read('%s' % fn)
yield [buf, bbx]
它为您提供了一个生成器 get_data()
,其中 returns jpeg 编码图像和边界框。它的存储方式似乎很复杂,因为它是一个包含 Matlab 生成的边界框的文件。
要绘制边界框,您可以使用:
def draw_rect(img, top, left, bottom, right, rgb, margin=1):
m = margin
r, g, b = rgb
img[top:bottom, left - m:left + m, 0] = r
img[top:bottom, left - m:left + m, 1] = g
img[top:bottom, left - m:left + m, 2] = b
img[top:bottom, right - m:right + m, 0] = r
img[top:bottom, right - m:right + m, 1] = g
img[top:bottom, right - m:right + m, 2] = b
img[top - m:top + m, left:right, 0] = r
img[top - m:top + m, left:right, 1] = g
img[top - m:top + m, left:right, 2] = b
img[bottom - m:bottom + m, left:right, 0] = r
img[bottom - m:bottom + m, left:right, 1] = g
img[bottom - m:bottom + m, left:right, 2] = b
return img
整个脚本在这里: https://gist.github.com/PatWie/a743d2349f388b27ed3ef783919c3882
在 pip install -U git+https://github.com/ppwwyyxx/tensorpack.git
之后,您可以通过
python data_sampler.py --zip /scratch/patwie/data/wider_face/WIDER_val.zip \
--mat wider_face_split/wider_face_val.mat \
--debug
要将其转换为 lmdb 文件,您可以使用其他参数。此处无需解压数据。
要使用数据,就像在脚本中:
from tensorpack import *
ds = LMDBDataPoint('/scratch/wieschol/data/wider_face/WIDER_train.lmdb', shuffle=True)
ds = RawWiderFaceReader(matfile=args.mat, zipfile=args.zip)
ds.reset_state()
for jpeg, bbx in ds.get_data():
rgb = cv2.imdecode(np.asarray(jpeg), cv2.IMREAD_COLOR)