使用 tf.map_fn - Python/TensorFlow 将张量保存为 JPEG 图像
Save tensor as JPEG image with tf.map_fn - Python/TensorFlow
我有一个函数 returns 我有一个名为 layer 的变量 - 图像格式:
<tf.Tensor 'Conv2D_1:0' shape=(?, 16, 16, 1) dtype=float32>
我需要将这些图像保存为 .jpeg。
到目前为止我想过这样做:
# Reshape into tf.image.encode_jpeg format
images = tf.image.convert_image_dtype(layer, tf.uint8)
train_batch_size = 300
并且在会话中=tf.Session()
images_encode = tf.map_fn(lambda x: tf.image.encode_jpeg(x), images, dtype=tf.uint8) # There was no error in this line, is it right?
我现在的疑惑是如何配置来保存它们?
我试过这个:
# That means it will only scroll through my 300 images
# And it's these 300 images that I want to save
x_batch, y_true_batch = next_batch_size(train_batch_size)
feed_dict_train = {x: x_batch, y_true: y_true_batch}
result = session.run(images_encode, feed_dict=feed_dict_train)
format_str = ('%s.jpeg')
fr = format_str % datetime.now()
f = open(fr, "wb+")
f.write(result.eval())
f.close()
但我收到以下错误:
InvalidArgumentError (see above for traceback): TensorArray dtype is uint8 but Op is trying to write dtype string.
[[Node: map_5/while/TensorArrayWrite/TensorArrayWriteV3 = TensorArrayWriteV3[T=DT_STRING, _class=["loc:@map_5/TensorArray_1"], _device="/job:localhost/replica:0/task:0/cpu:0"](map_5/while/TensorArrayWrite/TensorArrayWriteV3/Enter, map_5/while/Identity, map_5/while/EncodeJpeg, map_5/while/Identity_1)]]
我的占位符是:
# Placeholder variable for the input images
x = tf.placeholder(tf.float32, shape=[None, img_size_flat], name='x')
# Reshape 'x'
x_image = tf.reshape(x, [-1, img_size, img_size, num_channels])
# Placeholder variable for the true labels associated with the images
y_true = tf.placeholder(tf.float32, shape=[None, num_classes], name='y_true')
你快完成了。类型必须是 tf.string
:
这给出了一个嘈杂的图像:
import tensorflow as tf
import numpy as np
noise = np.random.randn(3, 128, 128, 1).astype(np.float32) * 255
# your data
layer = tf.convert_to_tensor(noise)
images = tf.image.convert_image_dtype(layer, tf.uint8)
images_encode = tf.map_fn(lambda x: tf.image.encode_jpeg(x),
images, dtype=tf.string)
def write_jpg(buf, fn):
with open(fn, 'wb') as f:
f.write(encoded_jpegs[0])
with tf.Session() as sess:
encoded_jpegs = sess.run(images_encode)
for k, jpg in enumerate(encoded_jpegs):
with open("test%03i.jpg" % k, 'wb') as f:
f.write(jpg)
我有一个函数 returns 我有一个名为 layer 的变量 - 图像格式:
<tf.Tensor 'Conv2D_1:0' shape=(?, 16, 16, 1) dtype=float32>
我需要将这些图像保存为 .jpeg。
到目前为止我想过这样做:
# Reshape into tf.image.encode_jpeg format
images = tf.image.convert_image_dtype(layer, tf.uint8)
train_batch_size = 300
并且在会话中=tf.Session()
images_encode = tf.map_fn(lambda x: tf.image.encode_jpeg(x), images, dtype=tf.uint8) # There was no error in this line, is it right?
我现在的疑惑是如何配置来保存它们?
我试过这个:
# That means it will only scroll through my 300 images
# And it's these 300 images that I want to save
x_batch, y_true_batch = next_batch_size(train_batch_size)
feed_dict_train = {x: x_batch, y_true: y_true_batch}
result = session.run(images_encode, feed_dict=feed_dict_train)
format_str = ('%s.jpeg')
fr = format_str % datetime.now()
f = open(fr, "wb+")
f.write(result.eval())
f.close()
但我收到以下错误:
InvalidArgumentError (see above for traceback): TensorArray dtype is uint8 but Op is trying to write dtype string.
[[Node: map_5/while/TensorArrayWrite/TensorArrayWriteV3 = TensorArrayWriteV3[T=DT_STRING, _class=["loc:@map_5/TensorArray_1"], _device="/job:localhost/replica:0/task:0/cpu:0"](map_5/while/TensorArrayWrite/TensorArrayWriteV3/Enter, map_5/while/Identity, map_5/while/EncodeJpeg, map_5/while/Identity_1)]]
我的占位符是:
# Placeholder variable for the input images
x = tf.placeholder(tf.float32, shape=[None, img_size_flat], name='x')
# Reshape 'x'
x_image = tf.reshape(x, [-1, img_size, img_size, num_channels])
# Placeholder variable for the true labels associated with the images
y_true = tf.placeholder(tf.float32, shape=[None, num_classes], name='y_true')
你快完成了。类型必须是 tf.string
:
这给出了一个嘈杂的图像:
import tensorflow as tf
import numpy as np
noise = np.random.randn(3, 128, 128, 1).astype(np.float32) * 255
# your data
layer = tf.convert_to_tensor(noise)
images = tf.image.convert_image_dtype(layer, tf.uint8)
images_encode = tf.map_fn(lambda x: tf.image.encode_jpeg(x),
images, dtype=tf.string)
def write_jpg(buf, fn):
with open(fn, 'wb') as f:
f.write(encoded_jpegs[0])
with tf.Session() as sess:
encoded_jpegs = sess.run(images_encode)
for k, jpg in enumerate(encoded_jpegs):
with open("test%03i.jpg" % k, 'wb') as f:
f.write(jpg)