如何用 pandas DataFrame 中的前一个或下一个值替换 NaN?

How to replace NaNs by preceding or next values in pandas DataFrame?

假设我有一个包含一些 NaNs:

的 DataFrame
>>> import pandas as pd
>>> df = pd.DataFrame([[1, 2, 3], [4, None, None], [None, None, 9]])
>>> df
    0   1   2
0   1   2   3
1   4 NaN NaN
2 NaN NaN   9

我需要做的是将每个 NaN 替换为其上方同一列中的第一个非 NaN 值。假设第一行永远不会包含 NaN。因此,对于前面的示例,结果将是

   0  1  2
0  1  2  3
1  4  2  3
2  4  2  9

我可以逐列、逐元素地遍历整个 DataFrame 并直接设置值,但是有没有一种简单的(最好是无循环的)方法来实现这一点?

您可以在 DataFrame 上使用 fillna 方法并将该方法指定为 ffill(向前填充):

>>> df = pd.DataFrame([[1, 2, 3], [4, None, None], [None, None, 9]])
>>> df.fillna(method='ffill')
   0  1  2
0  1  2  3
1  4  2  3
2  4  2  9

这个方法...

propagate[s] last valid observation forward to next valid

反其道而行之,还有一个bfill方法。

此方法不会就地修改 DataFrame - 您需要将返回的 DataFrame 重新绑定到变量或指定 inplace=True:

df.fillna(method='ffill', inplace=True)

您可以使用 pandas.DataFrame.fillnamethod='ffill' 选项。 'ffill' 代表 'forward fill' 并将向前传播最后一个有效观察。替代方案是 'bfill',其工作方式相同,但向后。

import pandas as pd

df = pd.DataFrame([[1, 2, 3], [4, None, None], [None, None, 9]])
df = df.fillna(method='ffill')

print(df)
#   0  1  2
#0  1  2  3
#1  4  2  3
#2  4  2  9

这里还有一个直接的同义词函数,pandas.DataFrame.ffill,让事情变得更简单。

我在尝试此解决方案时注意到的一件事是,如果您在数组的开头或结尾处有 N/A,则 ffill 和 bfill 不太有效。两者都需要。

In [224]: df = pd.DataFrame([None, 1, 2, 3, None, 4, 5, 6, None])

In [225]: df.ffill()
Out[225]:
     0
0  NaN
1  1.0
...
7  6.0
8  6.0

In [226]: df.bfill()
Out[226]:
     0
0  1.0
1  1.0
...
7  6.0
8  NaN

In [227]: df.bfill().ffill()
Out[227]:
     0
0  1.0
1  1.0
...
7  6.0
8  6.0

ffill 现在有了自己的方法 pd.DataFrame.ffill

df.ffill()

     0    1    2
0  1.0  2.0  3.0
1  4.0  2.0  3.0
2  4.0  2.0  9.0

接受的答案是完美的。我有一个相关但略有不同的情况,我必须向前填补,但只能在小组内。如果有人有同样的需求,请知道 fillna 适用于 DataFrameGroupBy 对象。

>>> example = pd.DataFrame({'number':[0,1,2,nan,4,nan,6,7,8,9],'name':list('aaabbbcccc')})
>>> example
  name  number
0    a     0.0
1    a     1.0
2    a     2.0
3    b     NaN
4    b     4.0
5    b     NaN
6    c     6.0
7    c     7.0
8    c     8.0
9    c     9.0
>>> example.groupby('name')['number'].fillna(method='ffill') # fill in row 5 but not row 3
0    0.0
1    1.0
2    2.0
3    NaN
4    4.0
5    4.0
6    6.0
7    7.0
8    8.0
9    9.0
Name: number, dtype: float64

在我的例子中,我们有来自不同设备的时间序列,但有些设备在一段时间内无法发送任何值。所以我们应该为每个设备和时间段创建 NA 值,然后执行 fillna。

df = pd.DataFrame([["device1", 1, 'first val of device1'], ["device2", 2, 'first val of device2'], ["device3", 3, 'first val of device3']])
df.pivot(index=1, columns=0, values=2).fillna(method='ffill').unstack().reset_index(name='value')

结果:

        0   1   value
0   device1     1   first val of device1
1   device1     2   first val of device1
2   device1     3   first val of device1
3   device2     1   None
4   device2     2   first val of device2
5   device2     3   first val of device2
6   device3     1   None
7   device3     2   None
8   device3     3   first val of device3

只有一栏版本

  • 最后一个有效值
  • 填充NAN
df[column_name].fillna(method='ffill', inplace=True)
  • 下一个有效值
  • 填充NAN
df[column_name].fillna(method='backfill', inplace=True)

只是同意 ffill 方法,但一个额外的信息是您可以使用关键字参数 limit 限制前向填充。

>>> import pandas as pd    
>>> df = pd.DataFrame([[1, 2, 3], [None, None, 6], [None, None, 9]])

>>> df
     0    1   2
0  1.0  2.0   3
1  NaN  NaN   6
2  NaN  NaN   9

>>> df[1].fillna(method='ffill', inplace=True)
>>> df
     0    1    2
0  1.0  2.0    3
1  NaN  2.0    6
2  NaN  2.0    9

现在使用 limit 关键字参数

>>> df[0].fillna(method='ffill', limit=1, inplace=True)

>>> df
     0    1  2
0  1.0  2.0  3
1  1.0  2.0  6
2  NaN  2.0  9

您可以使用 fillna 删除或替换 NaN 值。

NaN 删除

import pandas as pd

df = pd.DataFrame([[1, 2, 3], [4, None, None], [None, None, 9]])

df.fillna(method='ffill')
     0    1    2
0  1.0  2.0  3.0
1  4.0  2.0  3.0
2  4.0  2.0  9.0

NaN 替换

df.fillna(0) # 0 means What Value you want to replace 
     0    1    2
0  1.0  2.0  3.0
1  4.0  0.0  0.0
2  0.0  0.0  9.0

引用pandas.DataFrame.fillna