每日 bigquery 聚合

bigquery aggregate for daily basis

我在 big-query(数据仓库)中有一个 table:

我想要的结果是:

这里是关于如何计算的解释:

  1. 2017-10-01 = $100 很明显,因为数据只有一个
  2. 2017-10-02 = $400 是第一行和第三行的总和。为什么?因为第二行和第三行有相同的发票。所以我们只使用最新的更新。
  3. 2017-10-04 = $800 是第 1,3 行和第 4 行的总和。为什么?这是因为我们每天只收一张发票。第 1 行 (T001)、第 3 行 (T002)、第 4 行 (T003)
  4. 2017-10-05 = 100 美元是第 1,5 行和第 6 行的总和。为什么?这是因为我们每天只收一张发票。第 1 行 (T001)、第 5 行 (T002)、第 6 行 (T003)

老实说,我完全不知道该怎么做。我已经尝试过多次分组等等。但是 none 它们按预期工作。这是我今天迄今为止的最新成果:

SELECT 
  amount,
  updatedDateOnly,
  invNo
FROM 
(
  SELECT 
    invNo,
    UpdatedDate,
    amount,
    DATE(updatedDate) as updatedDateOnly,
    row_number() OVER (PARTITION BY  invNo ORDER BY UpdatedDate DESC) AS rownum
  FROM [project:dataset.test] 
)
WHERE
  rownum = 1

只有 returns 最后一个日期。现在,我不知道如何每天查询。

感谢任何专家并愿意帮助查询的人。谢谢。

更新: json 中的数据,如果您想在 bigquery 或其他 SQL 服务器中尝试:

{"UpdatedDate":"2017-10-01 01:00:00","InvNo":"T001","amount":100}
{"UpdatedDate":"2017-10-02 01:00:00","InvNo":"T002","amount":200}
{"UpdatedDate":"2017-10-02 02:00:00","InvNo":"T002","amount":300}
{"UpdatedDate":"2017-10-04 01:00:00","InvNo":"T003","amount":400}
{"UpdatedDate":"2017-10-05 01:00:00","InvNo":"T002","amount":500}
{"UpdatedDate":"2017-10-05 02:00:00","InvNo":"T003","amount":500}

在每个日期,您需要每张发票的最新金额。那是比较复杂的。一种解决方案是从日期和记录的交叉连接开始。然后 window 函数可用于获取最近的金额:

select dte,
       sum(case when seqnum = 1 then amount else 0 end) as amount
from (select d.dte, t.*,
             row_number() over (partition by t.invNo order by t.UpdatedDate desc) as seqnum
      from (select distinct date(UpdatedDate) as dte
            from `project.dataset.test` t
           ) d join
           `project.dataset.test` t
           on date(t.UpdatedDate) <= d.dte
     ) td
group by dte;

以下适用于 BigQuery 标准 SQL

#standardSQL
WITH dates AS (
  SELECT DISTINCT DATE(UpdatedDate) UpdatedDay
  FROM `project.dataset.test`
),
qualified AS (
  SELECT DATE(UpdatedDate) UpdatedDay, InvNo, ARRAY_AGG(amount ORDER BY UpdatedDate DESC LIMIT 1)[SAFE_OFFSET(0)] amount
  FROM `project.dataset.test`
  GROUP BY UpdatedDay, InvNo
)
SELECT UpdatedDay, SUM(amount) amount
FROM (
  SELECT d.UpdatedDay UpdatedDay, InvNo, ARRAY_AGG(amount ORDER BY q.UpdatedDay DESC LIMIT 1)[SAFE_OFFSET(0)] amount
  FROM dates d
  JOIN qualified q
  ON q.UpdatedDay <= d.UpdatedDay
  GROUP BY UpdatedDay, InvNo
)
GROUP BY UpdatedDay
-- ORDER BY UpdatedDay

您可以使用您问题中的以下虚拟数据来测试/玩这个

#standardSQL
WITH `project.dataset.test` AS (
  SELECT TIMESTAMP '2017-10-01 01:00:00' UpdatedDate, 'T001' InvNo, 100 amount UNION ALL
  SELECT TIMESTAMP '2017-10-02 01:00:00', 'T002', 200 UNION ALL
  SELECT TIMESTAMP '2017-10-02 02:00:00', 'T002', 300 UNION ALL
  SELECT TIMESTAMP '2017-10-04 01:00:00', 'T003', 400 UNION ALL
  SELECT TIMESTAMP '2017-10-05 01:00:00', 'T002', 500 UNION ALL
  SELECT TIMESTAMP '2017-10-05 02:00:00', 'T003', 500 
),
dates AS (
  SELECT DISTINCT DATE(UpdatedDate) UpdatedDay
  FROM `project.dataset.test`
),
qualified AS (
  SELECT DATE(UpdatedDate) UpdatedDay, InvNo, ARRAY_AGG(amount ORDER BY UpdatedDate DESC LIMIT 1)[SAFE_OFFSET(0)] amount
  FROM `project.dataset.test`
  GROUP BY UpdatedDay, InvNo
)
SELECT UpdatedDay, SUM(amount) amount
FROM (
  SELECT d.UpdatedDay UpdatedDay, InvNo, ARRAY_AGG(amount ORDER BY q.UpdatedDay DESC LIMIT 1)[SAFE_OFFSET(0)] amount
  FROM dates d
  JOIN qualified q
  ON q.UpdatedDay <= d.UpdatedDay
  GROUP BY UpdatedDay, InvNo
)
GROUP BY UpdatedDay
ORDER BY UpdatedDay

结果符合预期

UpdatedDay  amount   
2017-10-01   100     
2017-10-02   400     
2017-10-04   800     
2017-10-05  1100