根据 R 中的特定列名从字符向量中删除逗号

Remove commas from character vectors based on specific column names in R

我有一个大数据框。较小的子集如下:

structure(list(Date = c("2017-08-12", "2017-08-12", "2017-08-12"
  ), `Time (sec)` = c("19:01:04", "07:30:18", "04:29:38"), `4+DURATION` = c("26", 
  "58,000", "27"), `4+'000 (AVG)` = c("0.0000", "0.0000", "0.0000"), 
  `15+DURATION` = c("26", "57,000", "27"), `15+'000 (AVG)` = c("0.0000", 
  "0.0000", "0.0000")), .Names = c("Date", "Time (sec)", "4+DURATION", 
   "4+'000 (AVG)", "15+DURATION", "15+'000 (AVG)"), row.names = 3:5, class = "data.frame")

实际的数据框是这样的:

       Date Time (sec) 4+DURATION 4+'000 (AVG) 15+DURATION 15+'000 (AVG)
3 2017-08-12   19:01:04         26       0.0000          26        0.0000
4 2017-08-12   07:30:18     58,000       0.0000      57,000        0.0000
5 2017-08-12   04:29:38         27       0.0000          27        0.0000

从第 3 列开始,其余列都存储为字符向量。我正在尝试将字符转换为数字。以下是我使用的代码。

cols.num <- names(dat[,-c(1:2)])
dat[cols.num] <- sapply(dat[cols.num],as.numeric)

dat 是我的数据框。这会强制两个持续时间列中的 NA 值,其中字符值中有一个额外的逗号。

我试图通过

删除它
df[,unique(grep("DUR", names(df), value=T))] <- gsub(",","",df[,unique(grep("DUR", names(df), value=T))])

但这会创建一个像这样的 df

    Date Time (sec)           4+DURATION 4+'000 (AVG)          15+DURATION 15+'000 (AVG)
3 2017-08-12   19:01:04 c("26" "58000" "27")       0.0000 c("26" "57000" "27")        0.0000
4 2017-08-12   07:30:18 c("26" "57000" "27")       0.0000 c("26" "58000" "27")        0.0000
5 2017-08-12   04:29:38 c("26" "58000" "27")       0.0000 c("26" "57000" "27")        0.0000

但期望的输出是:

   Date Time (sec) 4+DURATION 4+'000 (AVG) 15+DURATION 15+'000 (AVG)
3 2017-08-12   19:01:04         26       0.0000          26        0.0000
4 2017-08-12   07:30:18      58000       0.0000        57000        0.0000
5 2017-08-12   04:29:38         27       0.0000          27        0.0000

此数据框中的问题是,我不知道哪一列将具有持续时间值,并且具有持续时间值的列名称不断变化,从 4+DURATION 到 45+DURATION 等。我想删除在将矢量应用到数字之前,所有名称中带有 DURATION 的矢量的逗号。

一个dplyr解决方案:

d <- structure(list(Date = c("2017-08-12", "2017-08-12", "2017-08-12"
  ), `Time (sec)` = c("19:01:04", "07:30:18", "04:29:38"), `4+DURATION` = c("26", 
  "58,000", "27"), `4+'000 (AVG)` = c("0.0000", "0.0000", "0.0000"), 
  `15+DURATION` = c("26", "57,000", "27"), `15+'000 (AVG)` = c("0.0000", 
  "0.0000", "0.0000")), .Names = c("Date", "Time (sec)", "4+DURATION", 
   "4+'000 (AVG)", "15+DURATION", "15+'000 (AVG)"), row.names = 3:5, class = "data.frame")
d2 <- d %>% mutate_at(vars(contains('DURATION')), funs(as.numeric(gsub(',', '', .))))
str(d2)

您需要 *apply 它到感兴趣的列,因为 gsub(仅供参考,sub 在这里也很好)是 NOT矢量化,即

df[,unique(grep("DUR", names(df), value=T))] <- 
                     lapply(df[,unique(grep("DUR", names(df), value=T))], function(i) 
                                                          as.numeric(sub(',', '', i)))

这给出了,

       Date Time (sec) 4+DURATION 4+'000 (AVG) 15+DURATION 15+'000 (AVG)
3 2017-08-12   19:01:04         26       0.0000          26        0.0000
4 2017-08-12   07:30:18      58000       0.0000       57000        0.0000
5 2017-08-12   04:29:38         27       0.0000          27        0.0000
#str(df)
#'data.frame':  3 obs. of  6 variables:
# $ Date         : chr  "2017-08-12" "2017-08-12" "2017-08-12"
# $ Time (sec)   : chr  "19:01:04" "07:30:18" "04:29:38"
# $ 4+DURATION   : num  26 58000 27
# $ 4+'000 (AVG) : chr  "0.0000" "0.0000" "0.0000"
# $ 15+DURATION  : num  26 57000 27
# $ 15+'000 (AVG): chr  "0.0000" "0.0000" "0.0000"