AUC 与 GridSearchCV AUC 有何不同?

How can AUC differ from GridSearchCV AUC?

我正在 sci-kit learn 中构建 MLPClassifier 模型。我使用带有 roc_auc 的 gridSearchCV 对模型进行评分。平均训练和测试分数在 0.76 左右,不错。 cv_results_ 的输出是:

Train set AUC:  0.553465272412
Grid best score (AUC):  0.757236688092
Grid best parameter (max. AUC):  {'hidden_layer_sizes': 10}

{   'mean_fit_time': array([63.54, 136.37, 136.32, 119.23, 121.38, 124.03]),
    'mean_score_time': array([ 0.04,  0.04,  0.04,  0.05,  0.05,  0.06]),
    'mean_test_score': array([ 0.76,  0.74,  0.75,  0.76,  0.76,  0.76]),
    'mean_train_score': array([ 0.76,  0.76,  0.76,  0.77,  0.77,  0.77]),
    'param_hidden_layer_sizes': masked_array(data = [5 (5, 5) (5, 10) 10 (10, 5) (10, 10)],
             mask = [False False False False False False],
       fill_value = ?)
,
    'params': [   {'hidden_layer_sizes': 5},
                  {'hidden_layer_sizes': (5, 5)},
                  {'hidden_layer_sizes': (5, 10)},
                  {'hidden_layer_sizes': 10},
                  {'hidden_layer_sizes': (10, 5)},
                  {'hidden_layer_sizes': (10, 10)}],
    'rank_test_score': array([   2,    6,    5,    1,    4,    3]),
    'split0_test_score': array([ 0.76,  0.75,  0.75,  0.76,  0.76,  0.76]),
    'split0_train_score': array([ 0.76,  0.75,  0.75,  0.76,  0.76,  0.76]),
    'split1_test_score': array([ 0.77,  0.76,  0.76,  0.77,  0.76,  0.76]),
    'split1_train_score': array([ 0.76,  0.75,  0.75,  0.76,  0.76,  0.76]),
    'split2_test_score': array([ 0.74,  0.72,  0.73,  0.74,  0.74,  0.75]),
    'split2_train_score': array([ 0.77,  0.77,  0.77,  0.77,  0.77,  0.77]),
    'std_fit_time': array([47.59,  1.29,  1.86,  3.43,  2.49,  9.22]),
    'std_score_time': array([ 0.01,  0.01,  0.01,  0.00,  0.00,  0.01]),
    'std_test_score': array([ 0.01,  0.01,  0.01,  0.01,  0.01,  0.01]),
    'std_train_score': array([ 0.01,  0.01,  0.01,  0.01,  0.01,  0.00])}

如您所见,我使用的 KFold 为 3。有趣的是,手动计算的训练集的 roc_auc_score 报告为 0.55,而平均训练得分报告为 ~0.76。生成此输出的代码是:

def model_mlp (X_train, y_train, verbose=True, random_state = 42):
    grid_values = {'hidden_layer_sizes': [(5), (5,5), (5, 10),
                                          (10), (10, 5), (10, 10)]}

    # MLP requires scaling of all predictors
    scaler = StandardScaler()
    X_train = scaler.fit_transform(X_train)

    mlp = MLPClassifier(solver='adam', learning_rate_init=1e-4,
                        max_iter=200,
                        verbose=False,
                        random_state=random_state)
    # perform the grid search
    grid_auc = GridSearchCV(mlp, 
                            param_grid=grid_values,
                            scoring='roc_auc', 
                            verbose=2, n_jobs=-1)
    grid_auc.fit(X_train, y_train)
    y_hat = grid_auc.predict(X_train)

    # print out the results
    if verbose:
        print('Train set AUC: ', roc_auc_score(y_train, y_hat))
        print('Grid best score (AUC): ', grid_auc.best_score_)
        print('Grid best parameter (max. AUC): ', grid_auc.best_params_)
        print('')
        pp = pprint.PrettyPrinter(indent=4)
        pp.pprint (grid_auc.cv_results_)
        print ('MLPClassifier fitted, {:.2f} seconds used'.format (time.time () - t))

    return grid_auc.best_estimator_

由于这种差异,我决定 'emulate' GridSearchCV 例程并得到以下结果:

Shape X_train: (107119, 15)
Shape y_train: (107119,)
Shape X_val: (52761, 15)
Shape y_val: (52761,)
       layers    roc-auc
  Seq  l1  l2  train   test iters runtime
    1   5   0 0.5522 0.5488    85   20.54
    2   5   5 0.5542 0.5513    80   27.10
    3   5  10 0.5544 0.5521    83   28.56
    4  10   0 0.5532 0.5516    61   15.24
    5  10   5 0.5540 0.5518    54   19.86
    6  10  10 0.5507 0.5474    56   21.09

分数都在0.55左右,与上面代码中人工计算一致。令我惊讶的是结果没有变化。好像我犯了一些错误,但我找不到,看代码:

def simple_mlp (X, y, verbose=True, random_state = 42):
    def do_mlp (X_t, X_v, y_t, y_v, n, l1, l2=None):
        if l2 is None:
            layers = (l1)
            l2 = 0
        else:
            layers = (l1, l2)

        t = time.time ()
        mlp = MLPClassifier(solver='adam', learning_rate_init=1e-4,
                            hidden_layer_sizes=layers,
                            max_iter=200,
                            verbose=False,
                            random_state=random_state)
        mlp.fit(X_t, y_t)
        y_hat_train = mlp.predict(X_t)
        y_hat_val = mlp.predict(X_v)
        if verbose:
            av = 'samples'
            acc_trn = roc_auc_score(y_train, y_hat_train, average=av)
            acc_tst = roc_auc_score(y_val, y_hat_val, average=av)
            print ("{:5d}{:4d}{:4d}{:7.4f}{:7.4f}{:9d}{:8.2f}"
                   .format(n, l1, l2, acc_trn, acc_tst,  mlp.n_iter_, time.time() - t))
        return mlp, n + 1

    X_train, X_val, y_train, y_val = train_test_split (X, y, test_size=0.33, random_state=random_state)
    if verbose:
        print('Shape X_train:', X_train.shape)
        print('Shape y_train:', y_train.shape)
        print('Shape X_val:', X_val.shape)
        print('Shape y_val:', y_val.shape)

    # MLP requires scaling of all predictors
    scaler = StandardScaler()
    X_train = scaler.fit_transform(X_train)
    X_val = scaler.transform(X_val)

    n = 1
    layers1 = [5, 10]
    layers2 = [5, 10]
    if verbose:
        print ("       layers    roc-auc")
        print ("  Seq  l1  l2  train validation iters runtime")
    for l1 in layers1:
        mlp, n = do_mlp (X_train, X_val, y_train, y_val, n, l1)
        for l2 in layers2:
            mlp, n = do_mlp (X_train, X_val, y_train, y_val, n, l1, l2)

    return mlp

我在这两种情况下使用完全相同的数据(159880 个观察值和 15 个预测变量)。我对 GridSearchCV 使用 cv=3(默认值),并在我的手工代码中对验证集使用相同的比例。 在搜索可能的答案时,我发现 this post on SO 描述了同样的问题。没有回答。也许有人明白到底发生了什么?

感谢您的宝贵时间。

编辑

我按照@Mohammed Kashif 的建议检查了 GridSearchCV 和 KFold 的代码,确实发现了一个明确的评论,即 KFold 没有打乱数据。所以我在缩放器之前的 model_mlp 添加了以下代码:

np.random.seed (random_state)
index = np.random.permutation (len(X_train))
X_train = X_train.iloc[index]

并替换为 simple_mlp train_test_split:

np.random.seed (random_state)
index = np.random.permutation (len(X))
X = X.iloc[index]
y = y.iloc[index]
train_size = int (2 * len(X) / 3.0) # sample of 2 third
X_train = X[:train_size]
X_val = X[train_size:]
y_train = y[:train_size]
y_val = y[train_size:]

这导致了以下输出:

Train set AUC:  0.5
Grid best score (AUC):  0.501410198106
Grid best parameter (max. AUC):  {'hidden_layer_sizes': (5, 10)}

{   'mean_fit_time': array([28.62, 46.00, 54.44, 46.74, 55.25, 53.33]),
    'mean_score_time': array([ 0.04,  0.05,  0.05,  0.05,  0.05,  0.06]),
    'mean_test_score': array([ 0.50,  0.50,  0.50,  0.50,  0.50,  0.50]),
    'mean_train_score': array([ 0.50,  0.51,  0.51,  0.51,  0.50,  0.51]),
    'param_hidden_layer_sizes': masked_array(data = [5 (5, 5) (5, 10) 10 (10, 5) (10, 10)],
             mask = [False False False False False False],
       fill_value = ?)
,
    'params': [   {'hidden_layer_sizes': 5},
                  {'hidden_layer_sizes': (5, 5)},
                  {'hidden_layer_sizes': (5, 10)},
                  {'hidden_layer_sizes': 10},
                  {'hidden_layer_sizes': (10, 5)},
                  {'hidden_layer_sizes': (10, 10)}],
    'rank_test_score': array([   6,    2,    1,    4,    5,    3]),
    'split0_test_score': array([ 0.50,  0.50,  0.51,  0.50,  0.50,  0.50]),
    'split0_train_score': array([ 0.50,  0.51,  0.50,  0.51,  0.50,  0.51]),
    'split1_test_score': array([ 0.50,  0.50,  0.50,  0.50,  0.49,  0.50]),
    'split1_train_score': array([ 0.50,  0.50,  0.51,  0.50,  0.51,  0.51]),
    'split2_test_score': array([ 0.49,  0.50,  0.49,  0.50,  0.50,  0.50]),
    'split2_train_score': array([ 0.51,  0.51,  0.51,  0.51,  0.50,  0.51]),
    'std_fit_time': array([19.74, 19.33,  0.55,  0.64,  2.36,  0.65]),
    'std_score_time': array([ 0.01,  0.01,  0.00,  0.01,  0.00,  0.01]),
    'std_test_score': array([ 0.01,  0.00,  0.01,  0.00,  0.00,  0.00]),
    'std_train_score': array([ 0.00,  0.00,  0.00,  0.00,  0.00,  0.00])}

这似乎证实了穆罕默德的话。我必须说一开始我非常怀疑,因为我无法想象随机化对这么大的一个看起来并不真正有序的数据集有如此强烈的影响。

不过我有些疑惑。在最初的设置中,GridSearchCV 始终高出大约 0.20,现在它一直低到大约 0.05。这是一个改进,因为两种方法的偏差都减少了 4 倍。是否有对最后发现的解释,或者两种方法之间的偏差大约 0.05 仅仅是噪声事实?我决定将此标记为正确答案,但我希望有人能解答我的疑惑。

分数的差异主要是由于 GridSearchCV 拆分数据集的方式不同以及您模拟它的函数。这样想吧。假设您的数据集中有 9 个数据点。现在在 GridSearchCV 中有 3 个折叠,假设分布是这样的:

train_cv_fold1_indices : 1 2 3 4 5 6 
test_cv_fold1_indices  : 7 8 9


train_cv_fold2_indices : 1 2 3 7 8 9 
test_cv_fold2_indices  : 4 5 6


train_cv_fold3_indices : 4 5 6 7 8 9 
test_cv_fold3_indices  : 1 2 3

但是,您模拟 GridSearchCV 的函数可能会以不同的方式拆分数据,例如:

train_indices : 1 3 5 7 8 9
test_indices  : 2 4 6

现在如您所见,这是对数据集的不同拆分,因此在其上训练的分类器的行为可能会大不相同。 (它甚至可能表现相同,这完全取决于数据点和各种其他因素,例如它们的相关性如何,它们是否有助于检查数据点之间的变化等)。

因此,为了完美地模拟 GridSearchCV,您需要以相同的方式执行拆分。

检查GridSearchCV Source and you will find out that at line no 592, that inorder to perform CV, they call another function from check_cv specified at this link. It actually calls either Kfold CV or startified CV

因此,根据您的实验,我建议使用固定的随机种子和上述函数(Kfold CV or startified CV)在您的数据集上明确执行 CV。然后在模拟函数中使用相同的 CV 对象以获得更具可比性的分析。那么你可能会得到更多相关的价值。