如何从传递边构建子图?
How to build a subgraph from transitive edges?
我有一个具有具体化关系的图,其中包含有用的信息,但出于可视化目的,我需要创建一个没有这些中间节点的子图。
示例:
[A:Person] <--AFFILIATE-- [B:Affiliation] --COMPANY--> [C:Org]
我想生成这样的子图:
[A:Person] --AFFILIATED_TO--> [C:Org]
有什么简单的方法可以用 Gremlin 实现吗?
我认为你最好的选择可能是使用 subgraph() 步骤,因为你通常可能会提取边诱导子图,然后在该子图上执行一些 Gremlin 以引入可视化边并删除你的东西不想。
我可以用 TinkerPop 打包的现代玩具图来演示:
gremlin> graph = TinkerFactory.createModern()
==>tinkergraph[vertices:6 edges:6]
gremlin> g = graph.traversal()
==>graphtraversalsource[tinkergraph[vertices:6 edges:6], standard]
gremlin> sg = g.V().outE('created').subgraph('sg').cap('sg').next() // subgraph creation
==>tinkergraph[vertices:5 edges:4]
gremlin> g = sg.traversal()
==>graphtraversalsource[tinkergraph[vertices:5 edges:4], standard]
gremlin> g.V().as('a'). // add special subgraph edge
......1> out('created').as('software').
......2> in('created').where(neq('a')).
......3> addE('co-developer').from('a').
......4> property('project',select('software').by('name'))
==>e[0][1-co-developer->4]
==>e[1][1-co-developer->6]
==>e[2][4-co-developer->1]
==>e[3][4-co-developer->6]
==>e[4][6-co-developer->1]
==>e[5][6-co-developer->4]
gremlin> g.V().hasLabel('software').drop() //remove junk from subgraph
gremlin> g.E()
==>e[0][1-co-developer->4]
==>e[1][1-co-developer->6]
==>e[2][4-co-developer->1]
==>e[3][4-co-developer->6]
==>e[4][6-co-developer->1]
==>e[5][6-co-developer->4]
gremlin> g.V().has('name','marko').outE('co-developer').valueMap(true)
==>[label:co-developer,project:lop,id:0]
==>[label:co-developer,project:lop,id:1]
我有一个具有具体化关系的图,其中包含有用的信息,但出于可视化目的,我需要创建一个没有这些中间节点的子图。
示例:
[A:Person] <--AFFILIATE-- [B:Affiliation] --COMPANY--> [C:Org]
我想生成这样的子图:
[A:Person] --AFFILIATED_TO--> [C:Org]
有什么简单的方法可以用 Gremlin 实现吗?
我认为你最好的选择可能是使用 subgraph() 步骤,因为你通常可能会提取边诱导子图,然后在该子图上执行一些 Gremlin 以引入可视化边并删除你的东西不想。
我可以用 TinkerPop 打包的现代玩具图来演示:
gremlin> graph = TinkerFactory.createModern()
==>tinkergraph[vertices:6 edges:6]
gremlin> g = graph.traversal()
==>graphtraversalsource[tinkergraph[vertices:6 edges:6], standard]
gremlin> sg = g.V().outE('created').subgraph('sg').cap('sg').next() // subgraph creation
==>tinkergraph[vertices:5 edges:4]
gremlin> g = sg.traversal()
==>graphtraversalsource[tinkergraph[vertices:5 edges:4], standard]
gremlin> g.V().as('a'). // add special subgraph edge
......1> out('created').as('software').
......2> in('created').where(neq('a')).
......3> addE('co-developer').from('a').
......4> property('project',select('software').by('name'))
==>e[0][1-co-developer->4]
==>e[1][1-co-developer->6]
==>e[2][4-co-developer->1]
==>e[3][4-co-developer->6]
==>e[4][6-co-developer->1]
==>e[5][6-co-developer->4]
gremlin> g.V().hasLabel('software').drop() //remove junk from subgraph
gremlin> g.E()
==>e[0][1-co-developer->4]
==>e[1][1-co-developer->6]
==>e[2][4-co-developer->1]
==>e[3][4-co-developer->6]
==>e[4][6-co-developer->1]
==>e[5][6-co-developer->4]
gremlin> g.V().has('name','marko').outE('co-developer').valueMap(true)
==>[label:co-developer,project:lop,id:0]
==>[label:co-developer,project:lop,id:1]