NaNin 线性时间序列回归

NaNin a linear time series regression

假设我有三个时间序列:

y <- c(7, 8, 9, 2, 4, 5, 9, 4) 
x <- c(9, 3, 5, 2, 7, 1, 6, 1) and 
z <- c(NaN, NaN, NaN, 9, 10, 3, 5, 3)

现在我想用 R 计算以下回归:reg1 <- lm(y~x+z) 然后 summary(reg1) 给出以下输出:

Call:
lm(formula = y ~ x + z)

Residuals:
ALL 3 residuals are 0: no residual degrees of freedom!

Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept)   6.2414         NA      NA       NA
x             0.5172         NA      NA       NA
z            -0.5862         NA      NA       NA

Residual standard error: NaN on 0 degrees of freedom
  (3 observations deleted due to missingness)
Multiple R-squared:      1, Adjusted R-squared:    NaN 
F-statistic:   NaN on 2 and 0 DF,  p-value: NA

所以看起来,系数是估计的,但是 t 值的 none 等。我的问题是,1) 为什么没有错误消息和 2) 我如何省略 NaN从回归中,所以 R 给我 t 值等?谢谢

输出实际上回答了这个问题:

ALL 3 residuals are 0: no residual degrees of freedom!

所以没有剩余的自由度来估计缺失的输出。使用此公式,至少需要 4 行非缺失数据才能估算缺失数量。