X3 解析规则不编译

X3 parse rule doesn't compile

我正在通过编写一个解析器来学习 Boost Spirit,该解析器解析 NAMS 使用的两种十六进制数变体:

  1. 带有 0x/0h 后缀或 h/x.
  2. 前缀的十六进制数
  3. 十六进制数,前缀为 $,并且必须后跟 十进制 数字。

这是我到目前为止的想法 Coliru Session:

//#define BOOST_SPIRIT_X3_DEBUG
#include <iostream>
#include <boost/spirit/home/x3.hpp>
#include <boost/spirit/home/x3/support/ast/variant.hpp>
#include <boost/spirit/include/support_extended_variant.hpp>

namespace x3 = boost::spirit::x3;

namespace ast {
    struct hex_data : std::string {};
    struct pascal_hex_data : std::string {};

    struct declared_data : boost::spirit::extended_variant<hex_data, pascal_hex_data>
    {
        declared_data () : base_type ()                              { std::cout << "ctor default\n";               } 
        declared_data (hex_data const& rhs) : base_type (rhs)        { std::cout << "ctor hex: " << rhs << "\n";    } 
        declared_data (pascal_hex_data const& rhs) : base_type (rhs) { std::cout << "ctor pascal: " << rhs << "\n"; } 
    };

} // namespace ast

typedef x3::rule<struct hex_digits_class,     std::string>          hex_digit_type;
typedef x3::rule<struct hex_data_class,       ast::hex_data>        hex_data_type;
typedef x3::rule<struct pascalhex_data_class, ast::pascal_hex_data> pascalhex_data_type;
typedef x3::rule<struct declared_data_class,  ast::declared_data>   declared_data_type;

const hex_data_type       hex_data       = "hex_data";
const hex_digit_type      hex_digit      = "hex_digit";
const pascalhex_data_type pascalhex_data = "pascal_hex_data";
const declared_data_type  declared_data  = "declared_data";

auto const hex_digit_def =
  = x3::skip(x3::char_('_'))
      [
        x3::no_case
        [
          x3::char_ ('0', '9') | x3::char_ ("a", "f")
        ]
      ]
  ;

auto const hex_data_def 
  = x3::no_case[x3::lit ("0h") | "0x"] >> +hex_digit_def
  | +hex_digit_def >> x3::no_case[x3::lit ("h") | "x"]
  ;

auto const pascalhex_data_def 
  = x3::lit ("$") >> x3::char_ ('0', '9') >> +hex_digit_def;

auto const declared_data_def 
  = hex_data_def
  | pascalhex_data_def
  ;

BOOST_SPIRIT_DEFINE (hex_digit, hex_data, pascalhex_data, declared_data)

struct Visitor
{
    using result_type = std::string;
    std::string operator()(ast::hex_data const & v) const        { return "hex_data";        } 
    std::string operator()(ast::pascal_hex_data const & v) const { return "pascal_hex_data"; } 
};

int main()
{
  std::string input = "";
  ast::declared_data parsed;

  bool r =
    x3::parse (input.begin (), input.end (),
               declared_data_def,
               parsed);

  std::cout << "r = " << r << "\n";
  Visitor v;
  std::cout << "result = " << boost::apply_visitor(v, parsed) << "\n";
}

但是,规则 pascalhex_data_def 无法编译,错误消息看起来像是 spirit 正在推断规则的属性是 charvector 的融合元组 variant 即使规则被指定为具有从 string:

派生的 ast 属性
typedef x3::rule<struct pascalhex_data_class, ast::pascal_hex_data> pascalhex_data_type;

谁能指出为什么boost推导的属性不是指定的?无论如何强制规则生成字符串而不是 tuple boost 试图 return?

就其实现的内容而言,您的代码似乎极其复杂。但是,看了半天,我发现你是在声明规则(强制他们的属性类型),但在关键时刻没有使用它们:

auto const declared_data_def = hex_data_def | pascalhex_data_def;

这意味着您直接从表达式模板 (_def) 初始值设定项构建表达式树,而不是规则:

auto const declared_data_def = hex_data | pascalhex_data;

即编译。它仍然存在一些问题:

  • 你can/should没有变体构造函数:

    struct declared_data : boost::spirit::extended_variant<hex_data, pascal_hex_data> {
        using extended_variant::extended_variant;
    };
    
  • 你可以把x3::char_ ('0', '9')写成x3::char_("0-9"),这样你就可以写成

    x3::no_case
    [
        x3::char_ ('0', '9') | x3::char_ ("a", "f")
    ]
    

    而不是

    x3::no_case [ x3::char_ ("0-9a-f") ]
    

    甚至

    x3::char_ ("0-9a-fA-F")
    

    或者,也许只是:

    x3::xdigit
    
  • hex_digits_type 声明了一个 std::string 属性,但只解析一个字符。不要使用 +hex_digits_def,只需使用 hex_digits 并写入:

    auto const hex_digits_def = x3::skip(x3::char_('_')) [ +x3::xdigit ];
    
  • 你的定义

    "$" >> x3::char_("0-9") >> hex_digits
    

    消耗十六进制数的第一位。这会导致错误(解析空字符串,例如 </code>)。相反,您可能想检查 <code>operator&:

    '$' >> &x3::char_("0-9") >> hex_digits
    

    或者,确实:

    '$' >> &x3::digit >> hex_digits
    
  • none 的规则实际上是递归的,因此 none 的规则需要声明和定义的任何分离。这大大减少了代码

简化,第 1 步

我怀疑您想要解释 十六进制数据为数字,而不是字符串。您 could/should 可能会相应地简化 AST。第 1 步:删除从 1 或其他格式解析的事物之间的区别:

namespace ast {
    using hex_literal = std::string;
}

现在整个程序简化为Live On Coliru

#include <iostream>
#include <boost/spirit/home/x3.hpp>

namespace ast {
    using hex_literal = std::string;
}

namespace parser {
    namespace x3 = boost::spirit::x3;

    auto const hex_digits = x3::rule<struct hex_digits_class, ast::hex_literal> {"hex_digits"} 
                          = x3::skip(x3::char_('_')) [ +x3::xdigit ];

    auto const hex_qualifier = x3::omit [ x3::char_("hxHX") ];

    auto const hex_literal = 
        ('$' >> &x3::xdigit | '0' >> hex_qualifier) >> hex_digits
        | hex_digits >> hex_qualifier;
}

int main()
{
    for (std::string const input : { 
            "",   "0x1b",   "0h1c",   "1dh",   "1ex",
            "_f", "0x1_fb", "0h1_fc", "1_fdh", "1_fex"
    }) {
        ast::hex_literal parsed;

        bool r = parse(input.begin(), input.end(), parser::hex_literal, parsed);
        std::cout << "r = " << std::boolalpha << r << ", result = " << parsed << "\n";
    }
}

正在打印:

r = true, result = 9
r = true, result = 1b
r = true, result = 1c
r = true, result = 1d
r = true, result = 1e
r = true, result = 9f
r = true, result = 1fb
r = true, result = 1fc
r = true, result = 1fd
r = true, result = 1fe

第2步(打破下划线解析)

现在,很显然,您想知道数值:

Live On Coliru

#include <iostream>
#include <boost/spirit/home/x3.hpp>

namespace ast {
    using hex_literal = uintmax_t;
}

namespace parser {
    namespace x3 = boost::spirit::x3;

    auto const hex_qualifier = x3::omit [ x3::char_("hxHX") ];

    auto const hex_literal 
        = ('$' >> &x3::xdigit | '0' >> hex_qualifier) >> x3::hex
        | x3::hex >> hex_qualifier
        ;
}

int main()
{
    for (std::string const input : { 
            "",   "0x1b",   "0h1c",   "1dh",   "1ex",
            "_f", "0x1_fb", "0h1_fc", "1_fdh", "1_fex"
    }) {
        ast::hex_literal parsed;

        auto f = input.begin(), l = input.end();
        bool r = parse(f, l, parser::hex_literal, parsed) && f==l;

        std::cout << std::boolalpha
             << "r = "            << r
             << ",\tresult = "    << parsed
             << ",\tremaining: '" << std::string(f,l) << "'\n";
    }
}

打印

r = true,   result = 9, remaining: ''
r = true,   result = 27,    remaining: ''
r = true,   result = 28,    remaining: ''
r = true,   result = 29,    remaining: ''
r = true,   result = 30,    remaining: ''
r = false,  result = 9, remaining: '_f'
r = false,  result = 1, remaining: '_fb'
r = false,  result = 1, remaining: '_fc'
r = false,  result = 1, remaining: '1_fdh'
r = false,  result = 1, remaining: '1_fex'

第 3 步:再次使用下划线

这是我开始考虑自定义解析器的地方。这是因为它将开始涉及语义操作¹以及多个属性强制转换,坦率地说,将它们打包是最方便的,这样您就可以像其他人一样编写命令式 C++14:

Live On Coliru

#include <iostream>
#include <boost/spirit/home/x3.hpp>

namespace ast {
    using hex_literal = uintmax_t;
}

namespace parser {
    namespace x3 = boost::spirit::x3;

    struct hex_literal_type : x3::parser_base {
        using attribute_type = ast::hex_literal;

        template <typename It, typename Ctx, typename RCtx>
        static bool parse(It& f, It l, Ctx& ctx, RCtx&, attribute_type& attr) {
            std::string digits;

            skip_over(f, l, ctx); // pre-skip using surrounding skipper

            auto constexpr max_digits = std::numeric_limits<attribute_type>::digits / 8;
            auto digits_ = x3::skip(x3::as_parser('_')) [x3::repeat(1, max_digits) [ x3::xdigit ] ];

            auto qualifier = x3::omit [ x3::char_("hxHX") ];
            auto forms
                = ('$' >> &x3::digit | '0' >> qualifier) >> digits_
                | digits_ >> qualifier
                ;

            if (x3::parse(f, l, forms, digits)) {
                attr = std::stoull(digits, nullptr, 16);
                return true;
            }
            return false;
        }
    };

    hex_literal_type static const hex_literal;
}

int main() {
    for (std::string const input : { 
            "",   "0x1b",   "0h1c",   "1dh",   "1ex",
            "_f", "0x1_fb", "0h1_fc", "1_fdh", "1_fex",
            // edge cases
            "ffffffffH", // fits
            "1ffffffffH", // too big
            "[=26=]_00___01___________0__________0", // fine
            "0x", // fine, same as "0h"
            "$",
            // upper case
            "",   "0X1B",   "0H1C",   "1DH",   "1EX",
            "_F", "0X1_FB", "0H1_FC", "1_FDH", "1_FEX",
    }) {
        ast::hex_literal parsed = 0;

        auto f = input.begin(), l = input.end();
        bool r = parse(f, l, parser::hex_literal, parsed) && f==l;

        std::cout << std::boolalpha
             << "r = "            << r
             << ",\tresult = "    << parsed
             << ",\tremaining: '" << std::string(f,l) << "'\n";
    }
}

Note how I included max_digits to avoid runaway parsing (say when the input has 10 gigabyte of hex digits). You might want improve this by preskipping insignificant 0 digits.

现在的输出是:

r = true,   result = 9, remaining: ''
r = true,   result = 27,    remaining: ''
r = true,   result = 28,    remaining: ''
r = true,   result = 29,    remaining: ''
r = true,   result = 30,    remaining: ''
r = true,   result = 159,   remaining: ''
r = true,   result = 507,   remaining: ''
r = true,   result = 508,   remaining: ''
r = true,   result = 509,   remaining: ''
r = true,   result = 510,   remaining: ''
r = true,   result = 4294967295,    remaining: ''
r = false,  result = 0, remaining: '1ffffffffH'
r = true,   result = 256,   remaining: ''
r = true,   result = 0, remaining: ''
r = false,  result = 0, remaining: '$'
r = true,   result = 9, remaining: ''
r = true,   result = 27,    remaining: ''
r = true,   result = 28,    remaining: ''
r = true,   result = 29,    remaining: ''
r = true,   result = 30,    remaining: ''
r = true,   result = 159,   remaining: ''
r = true,   result = 507,   remaining: ''
r = true,   result = 508,   remaining: ''
r = true,   result = 509,   remaining: ''
r = true,   result = 510,   remaining: ''

第 4 步:锦上添花

如果您想保留往返的输入格式,您现在可以简单地将其添加到 AST 中:

Live On Coliru

#include <iostream>
#include <boost/spirit/home/x3.hpp>

namespace ast {
    struct hex_literal {
        uintmax_t value;
        std::string source;
    };
}

namespace parser {
    namespace x3 = boost::spirit::x3;

    struct hex_literal_type : x3::parser_base {
        using attribute_type = ast::hex_literal;

        template <typename It, typename Ctx, typename RCtx>
        static bool parse(It& f, It l, Ctx& ctx, RCtx&, attribute_type& attr) {
            std::string digits;

            skip_over(f, l, ctx); // pre-skip using surrounding skipper
            It b = f; // save start

            auto constexpr max_digits = std::numeric_limits<decltype(attr.value)>::digits / 8;
            auto digits_ = x3::skip(x3::as_parser('_')) [x3::repeat(1, max_digits) [ x3::xdigit ] ];

            auto qualifier = x3::omit [ x3::char_("hxHX") ];
            auto forms
                = ('$' >> &x3::digit | '0' >> qualifier) >> digits_
                | digits_ >> qualifier
                ;

            if (x3::parse(f, l, forms, digits)) {
                attr.value = std::stoull(digits, nullptr, 16);
                attr.source.assign(b,l);
                return true;
            }
            return false;
        }
    };

    hex_literal_type static const hex_literal;
}

int main()
{
    for (std::string const input : { 
            "",   "0x1b",   "0h1c",   "1dh",   "1ex",
            "_f", "0x1_fb", "0h1_fc", "1_fdh", "1_fex",
            // edge cases
            "ffffffffH", // fits
            "1ffffffffH", // too big
            "[=28=]_00___01___________0__________0", // fine
            "0x", // fine, same as "0h"
            "$",
            // upper case
            "",   "0X1B",   "0H1C",   "1DH",   "1EX",
            "_F", "0X1_FB", "0H1_FC", "1_FDH", "1_FEX",
    }) {
        ast::hex_literal parsed = {};

        auto f = input.begin(), l = input.end();
        bool r = parse(f, l, parser::hex_literal, parsed) && f==l;

        if (r) {
            std::cout << "result = " << parsed.value
                      << ",\tsource = '" << parsed.source << "'\n";
        }
        else {
            std::cout << "FAILED"
                      << ",\tremaining: '" << std::string(f,l) << "'\n";
        }
    }
}

打印:

result = 9, source = ''
result = 27,    source = '0x1b'
result = 28,    source = '0h1c'
result = 29,    source = '1dh'
result = 30,    source = '1ex'
result = 159,   source = '_f'
result = 507,   source = '0x1_fb'
result = 508,   source = '0h1_fc'
result = 509,   source = '1_fdh'
result = 510,   source = '1_fex'
result = 4294967295,    source = 'ffffffffH'
FAILED, remaining: '1ffffffffH'
result = 256,   source = '[=29=]_00___01___________0__________0'
result = 0, source = '0x'
FAILED, remaining: '$'
result = 9, source = ''
result = 27,    source = '0X1B'
result = 28,    source = '0H1C'
result = 29,    source = '1DH'
result = 30,    source = '1EX'
result = 159,   source = '_F'
result = 507,   source = '0X1_FB'
result = 508,   source = '0H1_FC'
result = 509,   source = '1_FDH'
result = 510,   source = '1_FEX'

¹ Boost Spirit: "Semantic actions are evil"?