如何在 C++ 中可视化 Caffe 深度学习过程的各个层输出?
How to visualize Caffe deep learning process's individual layer output in C++?
我正在使用 Caffe 进行深度学习。我的程序是用 C++ 编写的。
在 net_->Forward(&loss);
处的每次 forward 迭代,我们都会遍历 prototxt 文件中定义的所有层,以及如何在 C++ 中可视化每个层的输出。
Inside net.cpp
file inside Caffe library
,这个循环迭代逐层转发。
template <typename Dtype>
Dtype Net<Dtype>::ForwardFromTo(int start, int end) {
CHECK_GE(start, 0);
CHECK_LT(end, layers_.size());
Dtype loss = 0;
for (int i = start; i <= end; ++i) {
//cout << "Forwarding " << layer_names_[i] << endl;
Dtype layer_loss = layers_[i]->Forward(bottom_vecs_[i], top_vecs_[i]);
loss += layer_loss;
if (debug_info_) { ForwardDebugInfo(i); }
}
return loss;
}
top_vecs_[i] is output of each layer
我如何将其可视化?
根据Shai的建议,我的做法是ForwardDebugInfo()
.
for (int top_id = 0; top_id < top_vecs_[layer_id].size(); ++top_id) {
Blob<Dtype>& blob = *top_vecs_[layer_id][top_id];
const string& blob_name = blob_names_[top_id_vecs_[layer_id][top_id]];
string name = blob_name;
for (int i = 0; i < name.length(); ++i) {
if (name[i] == '/')
name[i] = '_';
}
string foldname = "images/"+name;
if (stat(foldname.c_str(), &st) == -1) {
mkdir(foldname.c_str(), 0700);
}
//cout<<"blob_name " << blob_name << " layer_id is " << layer_id << " blob.num() " << blob.num() << " blob.channels() " << blob.channels() << " blob.height() " << blob.height() << " blob.width() " << blob.width() << endl;
///////Plotting output of individual layer
if(blob.height()>1 && blob.width()>1){
cv::Size ss(blob.width(), blob.height());
Dtype* data = blob.mutable_cpu_data();
for(int k=0; k < blob.channels(); k++)
{
cv::Mat channel(ss, CV_32FC1, data);
stringstream s;
s << k;
cv::imwrite(foldname+"/"+s.str()+".jpg",channel*255.0);
channel.release();
data += ss.area();
}
}
// mainImg.release();
/////////////////////////////////////////
const Dtype data_abs_val_mean = blob.asum_data() / blob.count();
LOG_IF(INFO, Caffe::root_solver())
<< " [Forward] "
<< "Layer " << layer_names_[layer_id]
<< ", top blob " << blob_name
<< " data: " << data_abs_val_mean;
}
我正在使用 Caffe 进行深度学习。我的程序是用 C++ 编写的。
在 net_->Forward(&loss);
处的每次 forward 迭代,我们都会遍历 prototxt 文件中定义的所有层,以及如何在 C++ 中可视化每个层的输出。
Inside net.cpp
file inside Caffe library
,这个循环迭代逐层转发。
template <typename Dtype>
Dtype Net<Dtype>::ForwardFromTo(int start, int end) {
CHECK_GE(start, 0);
CHECK_LT(end, layers_.size());
Dtype loss = 0;
for (int i = start; i <= end; ++i) {
//cout << "Forwarding " << layer_names_[i] << endl;
Dtype layer_loss = layers_[i]->Forward(bottom_vecs_[i], top_vecs_[i]);
loss += layer_loss;
if (debug_info_) { ForwardDebugInfo(i); }
}
return loss;
}
top_vecs_[i] is output of each layer
我如何将其可视化?
根据Shai的建议,我的做法是ForwardDebugInfo()
.
for (int top_id = 0; top_id < top_vecs_[layer_id].size(); ++top_id) {
Blob<Dtype>& blob = *top_vecs_[layer_id][top_id];
const string& blob_name = blob_names_[top_id_vecs_[layer_id][top_id]];
string name = blob_name;
for (int i = 0; i < name.length(); ++i) {
if (name[i] == '/')
name[i] = '_';
}
string foldname = "images/"+name;
if (stat(foldname.c_str(), &st) == -1) {
mkdir(foldname.c_str(), 0700);
}
//cout<<"blob_name " << blob_name << " layer_id is " << layer_id << " blob.num() " << blob.num() << " blob.channels() " << blob.channels() << " blob.height() " << blob.height() << " blob.width() " << blob.width() << endl;
///////Plotting output of individual layer
if(blob.height()>1 && blob.width()>1){
cv::Size ss(blob.width(), blob.height());
Dtype* data = blob.mutable_cpu_data();
for(int k=0; k < blob.channels(); k++)
{
cv::Mat channel(ss, CV_32FC1, data);
stringstream s;
s << k;
cv::imwrite(foldname+"/"+s.str()+".jpg",channel*255.0);
channel.release();
data += ss.area();
}
}
// mainImg.release();
/////////////////////////////////////////
const Dtype data_abs_val_mean = blob.asum_data() / blob.count();
LOG_IF(INFO, Caffe::root_solver())
<< " [Forward] "
<< "Layer " << layer_names_[layer_id]
<< ", top blob " << blob_name
<< " data: " << data_abs_val_mean;
}