在Pandas中,如何计算给定另一列值的一列值的相对概率?
In Pandas, how to calculate the relative probabilities of values of a column given a value of another column?
我有两个数据框,vehicles
和 casualties
,每个数据框都有一个公共列 Accident_Index
:
import pandas as pd
vehicles = pd.DataFrame({'Accident_Index': [1, 1, 2, 3, 3, 4, 4],
'Vehicle_Type': ['car', 'car', 'motorcyle', 'car', 'car', 'car', 'car'],
'Sex_Driver': ['male', 'female', 'male', 'female', 'female', 'male', 'male']})
casualties = pd.DataFrame({'Accident_Index': [1, 1, 2, 3, 4],
'Casualty_Severity': ['fatal', 'serious', 'fatal', 'light', 'fatal']})
为了便于可视化,这里是vehicles
:
Accident_Index Sex_Driver Vehicle_Type
0 1 male car
1 1 female car
2 2 male motorcyle
3 3 female car
4 3 female car
5 4 male car
6 4 male car
这里是 casualties
:
Accident_Index Casualty_Severity
0 1 fatal
1 1 serious
2 2 fatal
3 3 light
4 4 fatal
我想计算一下,与涉及女性汽车的事故 drivers 相比,涉及男性汽车 drivers 的事故致死的可能性高多少倍。
到目前为止,我想出了以下解决方案:
dfm = casualties.merge(vehicles, on='Accident_Index')
dfm_cars = dfm.loc[dfm.Vehicle_Type == 'car']
dfm_cars_fatal_male = dfm_cars.isin({'Casualty_Severity': ['fatal'], 'Sex_Driver': ['male']})
male_driver_involved_in_fatal_car_accident = (dfm_cars_fatal_male['Casualty_Severity'] & dfm_cars_fatal_male['Sex_Driver']).sum()
dfm_cars_fatal_female = dfm_cars.isin({'Casualty_Severity': ['fatal'], 'Sex_Driver': ['female']})
female_driver_involved_in_fatal_car_accident = (dfm_cars_fatal_female['Casualty_Severity'] & dfm_cars_fatal_female['Sex_Driver']).sum()
print(male_driver_involved_in_fatal_car_accident / female_driver_involved_in_fatal_car_accident)
在这种情况下,答案是3
,因为有两起车祸死亡,一男一女driver,另一男两人drivers.
但是,这段代码似乎不是特别简洁。我该如何重构它?
IIUC,你可以使用 merge
+ query
+ groupby
:
g = casualties.merge(vehicles, on='Accident_Index')\
.query("Vehicle_Type == 'car' and Casualty_Severity == 'fatal'")\
.groupby('Sex_Driver').Sex_Driver.count()
g / g.sum()
Sex_Driver
female 0.25
male 0.75
Name: Sex_Driver, dtype: float64
为简化此操作,您可以使用变量进行查询:
vehicle = 'car'
severity = 'fatal'
然后您可以将 query
步骤重写为:
query("Vehicle_Type == @vehicle and Casualty_Severity == @severity")
这可以更轻松地重用您的代码,例如,如果您想将代码放入函数中并针对各种输入组合进行测试。
我有两个数据框,vehicles
和 casualties
,每个数据框都有一个公共列 Accident_Index
:
import pandas as pd
vehicles = pd.DataFrame({'Accident_Index': [1, 1, 2, 3, 3, 4, 4],
'Vehicle_Type': ['car', 'car', 'motorcyle', 'car', 'car', 'car', 'car'],
'Sex_Driver': ['male', 'female', 'male', 'female', 'female', 'male', 'male']})
casualties = pd.DataFrame({'Accident_Index': [1, 1, 2, 3, 4],
'Casualty_Severity': ['fatal', 'serious', 'fatal', 'light', 'fatal']})
为了便于可视化,这里是vehicles
:
Accident_Index Sex_Driver Vehicle_Type
0 1 male car
1 1 female car
2 2 male motorcyle
3 3 female car
4 3 female car
5 4 male car
6 4 male car
这里是 casualties
:
Accident_Index Casualty_Severity
0 1 fatal
1 1 serious
2 2 fatal
3 3 light
4 4 fatal
我想计算一下,与涉及女性汽车的事故 drivers 相比,涉及男性汽车 drivers 的事故致死的可能性高多少倍。
到目前为止,我想出了以下解决方案:
dfm = casualties.merge(vehicles, on='Accident_Index')
dfm_cars = dfm.loc[dfm.Vehicle_Type == 'car']
dfm_cars_fatal_male = dfm_cars.isin({'Casualty_Severity': ['fatal'], 'Sex_Driver': ['male']})
male_driver_involved_in_fatal_car_accident = (dfm_cars_fatal_male['Casualty_Severity'] & dfm_cars_fatal_male['Sex_Driver']).sum()
dfm_cars_fatal_female = dfm_cars.isin({'Casualty_Severity': ['fatal'], 'Sex_Driver': ['female']})
female_driver_involved_in_fatal_car_accident = (dfm_cars_fatal_female['Casualty_Severity'] & dfm_cars_fatal_female['Sex_Driver']).sum()
print(male_driver_involved_in_fatal_car_accident / female_driver_involved_in_fatal_car_accident)
在这种情况下,答案是3
,因为有两起车祸死亡,一男一女driver,另一男两人drivers.
但是,这段代码似乎不是特别简洁。我该如何重构它?
IIUC,你可以使用 merge
+ query
+ groupby
:
g = casualties.merge(vehicles, on='Accident_Index')\
.query("Vehicle_Type == 'car' and Casualty_Severity == 'fatal'")\
.groupby('Sex_Driver').Sex_Driver.count()
g / g.sum()
Sex_Driver
female 0.25
male 0.75
Name: Sex_Driver, dtype: float64
为简化此操作,您可以使用变量进行查询:
vehicle = 'car'
severity = 'fatal'
然后您可以将 query
步骤重写为:
query("Vehicle_Type == @vehicle and Casualty_Severity == @severity")
这可以更轻松地重用您的代码,例如,如果您想将代码放入函数中并针对各种输入组合进行测试。