拟合 TfidfVectorizer - AttributeError / TypeError

Fitting TfidfVectorizer - AttributeError / TypeError

我对 Python 的了解仍在增长,并且一直坚持使用 TfidfVectorizer。我已经查看了其他一些问题,但到目前为止还没有找到任何对我有帮助的问题。

我正在尝试为产品描述列表创建 tfidf_matrix,但我失败了。

这是我的代码:

import nltk
import numpy as np
import pandas as pd
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.feature_extraction.text import TfidfVectorizer

# Make tokens per line

dataset = pd.read_csv('Cleansed Data.csv', delimiter=';', encoding='latin1')
tokens = dataset['Description'].apply(nltk.word_tokenize)
tokens_line = pd.DataFrame(np.array(tokens).reshape(len(tokens), 1), 
columns=['tokens'])
tokens_line_lists = tokens_line.values.tolist()    

# Get unique tokens

Filename = open('descriptions for tokens.txt')
vectorizer = CountVectorizer()
dtm = vectorizer.fit_transform(Filename)
vocab = vectorizer.get_feature_names()
tokens_unique = pd.DataFrame(np.array(vocab).reshape(len(vocab), 1), 
columns=['tokens'])

#TF-IDF Vectoriser

tfidf_vectoriser = TfidfVectorizer(max_df=0.8, max_features=20000, 
min_df=0.2, use_idf=True, tokenizer=tokens_unique, ngram_range=(1,3))

tfidf_matrix = tfidf_vectoriser.fit_transform(tokens_line)

我尝试使用(令牌)执行 fit_transform 我收到以下错误:

AttributeError: 'list' object has no attribute 'lower'

与 fit_transform 与 (tokens_line) 我得到:

TypeError: 'DataFrame' object is not callable

与 fit_transform 与 (tokens_line_lists) 我得到:

AttributeError: 'list' object has no attribute 'lower'

为什么不只是这个?

import numpy as np
import pandas as pd
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.feature_extraction.text import TfidfVectorizer

dataset = pd.read_csv('Cleansed Data.csv', encoding='latin1')
tokenlinelist = dataset['Description'].tolist()

tfidf_vectoriser = TfidfVectorizer(max_df=0.8, max_features=20000, 
min_df=0.2, use_idf=True, ngram_range=(1,3))

tfidf_matrix = tfidf_vectoriser.fit_transform(tokenlinelist)