如何归一化 iOS 中的视差数据?
How to normalize disparity data in iOS?
在 WWDC session "Image Editing with Depth" 他们提到了几次 normalizedDisparity
和 normalizedDisparityImage
:
"The basic idea is that we're going to map our normalized disparity
values into values between 0 and 1"
"So once you know the min and max you can normalize the depth or disparity between 0 and 1."
我试图首先像这样获得视差图像:
let disparityImage = depthImage.applyingFilter(
"CIDepthToDisparity", withInputParameters: nil)
然后我尝试获取 depthDataMap 并进行归一化,但没有成功。我在正确的轨道上吗?将不胜感激一些关于该做什么的提示。
编辑:
这是我的测试代码,质量请见谅。我得到 min
和 max
然后我尝试遍历数据以对其进行标准化 (let normalizedPoint = (point - min) / (max - min)
)
let depthDataMap = depthData!.depthDataMap
let width = CVPixelBufferGetWidth(depthDataMap) //768 on an iPhone 7+
let height = CVPixelBufferGetHeight(depthDataMap) //576 on an iPhone 7+
CVPixelBufferLockBaseAddress(depthDataMap, CVPixelBufferLockFlags(rawValue: 0))
// Convert the base address to a safe pointer of the appropriate type
let floatBuffer = unsafeBitCast(CVPixelBufferGetBaseAddress(depthDataMap),
to: UnsafeMutablePointer<Float32>.self)
var min = floatBuffer[0]
var max = floatBuffer[0]
for x in 0..<width{
for y in 0..<height{
let distanceAtXYPoint = floatBuffer[Int(x * y)]
if(distanceAtXYPoint < min){
min = distanceAtXYPoint
}
if(distanceAtXYPoint > max){
max = distanceAtXYPoint
}
}
}
我期望的是数据将反映用户点击图像但不匹配的差异。查找用户点击的视差的代码是 here:
// Apply the filter with the sampleRect from the user’s tap. Don’t forget to clamp!
let minMaxImage = normalized?.clampingToExtent().applyingFilter(
"CIAreaMinMaxRed", withInputParameters:
[kCIInputExtentKey : CIVector(cgRect:rect2)])
// A four-byte buffer to store a single pixel value
var pixel = [UInt8](repeating: 0, count: 4)
// Render the image to a 1x1 rect. Be sure to use a nil color space.
context.render(minMaxImage!, toBitmap: &pixel, rowBytes: 4,
bounds: CGRect(x:0, y:0, width:1, height:1),
format: kCIFormatRGBA8, colorSpace: nil)
// The max is stored in the green channel. Min is in the red.
let disparity = Float(pixel[1]) / 255.0
raywenderlich.com 上有一个名为“Image Depth Maps Tutorial for iOS”的新博客 post,其中包含示例应用程序和与使用深度相关的详细信息。示例代码显示了如何使用 CVPixelBuffer
扩展规范化深度数据:
extension CVPixelBuffer {
func normalize() {
let width = CVPixelBufferGetWidth(self)
let height = CVPixelBufferGetHeight(self)
CVPixelBufferLockBaseAddress(self, CVPixelBufferLockFlags(rawValue: 0))
let floatBuffer = unsafeBitCast(CVPixelBufferGetBaseAddress(self), to: UnsafeMutablePointer<Float>.self)
var minPixel: Float = 1.0
var maxPixel: Float = 0.0
for y in 0 ..< height {
for x in 0 ..< width {
let pixel = floatBuffer[y * width + x]
minPixel = min(pixel, minPixel)
maxPixel = max(pixel, maxPixel)
}
}
let range = maxPixel - minPixel
for y in 0 ..< height {
for x in 0 ..< width {
let pixel = floatBuffer[y * width + x]
floatBuffer[y * width + x] = (pixel - minPixel) / range
}
}
CVPixelBufferUnlockBaseAddress(self, CVPixelBufferLockFlags(rawValue: 0))
}
}
在处理深度数据时要记住,它们的分辨率低于实际图像,因此您需要按比例放大(更多信息请参见博客和 WWDC video)
尝试使用 Accelerate Framework vDSP 向量函数。这是两个函数中的规范化。
将 cvPixel 缓冲区更改为 0..1 标准化范围
myCVPixelBuffer.setUpNormalize()
import Accelerate
extension CVPixelBuffer {
func vectorNormalize( targetVector: UnsafeMutableBufferPointer<Float>) -> [Float] {
// range = max - min
// normalized to 0..1 is (pixel - minPixel) / range
// see Documentation "Using vDSP for Vector-based Arithmetic" in vDSP under system "Accelerate" documentation
// see also the Accelerate documentation section 'Vector extrema calculation'
// Maximium static func maximum<U>(U) -> Float
// Returns the maximum element of a single-precision vector.
//static func minimum<U>(U) -> Float
// Returns the minimum element of a single-precision vector.
let maxValue = vDSP.maximum(targetVector)
let minValue = vDSP.minimum(targetVector)
let range = maxValue - minValue
let negMinValue = -minValue
let subtractVector = vDSP.add(negMinValue, targetVector)
// adding negative value is subtracting
let result = vDSP.divide(subtractVector, range)
return result
}
func setUpNormalize() -> CVPixelBuffer {
// grayscale buffer float32 ie Float
// return normalized CVPixelBuffer
CVPixelBufferLockBaseAddress(self,
CVPixelBufferLockFlags(rawValue: 0))
let width = CVPixelBufferGetWidthOfPlane(self, 0)
let height = CVPixelBufferGetHeightOfPlane(self, 0)
let count = width * height
let bufferBaseAddress = CVPixelBufferGetBaseAddressOfPlane(self, 0)
// UnsafeMutableRawPointer
let pixelBufferBase = unsafeBitCast(bufferBaseAddress, to: UnsafeMutablePointer<Float>.self)
let depthCopy = UnsafeMutablePointer<Float>.allocate(capacity: count)
depthCopy.initialize(from: pixelBufferBase, count: count)
let depthCopyBuffer = UnsafeMutableBufferPointer<Float>(start: depthCopy, count: count)
let normalizedDisparity = vectorNormalize(targetVector: depthCopyBuffer)
pixelBufferBase.initialize(from: normalizedDisparity, count: count)
// copy back the normalized map into the CVPixelBuffer
depthCopy.deallocate()
// depthCopyBuffer.deallocate()
CVPixelBufferUnlockBaseAddress(self, CVPixelBufferLockFlags(rawValue: 0))
return self
}
}
您可以在
的 Apple 示例 'PhotoBrowse' 应用程序的修改版本中看到它的实际效果
https://github.com/racewalkWill/PhotoBrowseModified
上面will的回答很好,但是可以改进如下。我将它与照片中的深度数据一起使用,如果深度数据不遵循 16 位,如上文所述,它可能无法工作。还没找到这样的照片。我很惊讶在 Core Image 中没有过滤器来处理这个问题。
extension CVPixelBuffer {
func normalize() {
CVPixelBufferLockBaseAddress(self, CVPixelBufferLockFlags(rawValue: 0))
let width = CVPixelBufferGetWidthOfPlane(self, 0)
let height = CVPixelBufferGetHeightOfPlane(self, 0)
let count = width * height
let pixelBufferBase = unsafeBitCast(CVPixelBufferGetBaseAddressOfPlane(self, 0), to: UnsafeMutablePointer<Float>.self)
let depthCopyBuffer = UnsafeMutableBufferPointer<Float>(start: pixelBufferBase, count: count)
let maxValue = vDSP.maximum(depthCopyBuffer)
let minValue = vDSP.minimum(depthCopyBuffer)
let range = maxValue - minValue
let negMinValue = -minValue
let subtractVector = vDSP.add(negMinValue, depthCopyBuffer)
let normalizedDisparity = vDSP.divide(subtractVector, range)
pixelBufferBase.initialize(from: normalizedDisparity, count: count)
CVPixelBufferUnlockBaseAddress(self, CVPixelBufferLockFlags(rawValue: 0))
}
}
在 WWDC session "Image Editing with Depth" 他们提到了几次 normalizedDisparity
和 normalizedDisparityImage
:
"The basic idea is that we're going to map our normalized disparity values into values between 0 and 1"
"So once you know the min and max you can normalize the depth or disparity between 0 and 1."
我试图首先像这样获得视差图像:
let disparityImage = depthImage.applyingFilter(
"CIDepthToDisparity", withInputParameters: nil)
然后我尝试获取 depthDataMap 并进行归一化,但没有成功。我在正确的轨道上吗?将不胜感激一些关于该做什么的提示。
编辑:
这是我的测试代码,质量请见谅。我得到 min
和 max
然后我尝试遍历数据以对其进行标准化 (let normalizedPoint = (point - min) / (max - min)
)
let depthDataMap = depthData!.depthDataMap
let width = CVPixelBufferGetWidth(depthDataMap) //768 on an iPhone 7+
let height = CVPixelBufferGetHeight(depthDataMap) //576 on an iPhone 7+
CVPixelBufferLockBaseAddress(depthDataMap, CVPixelBufferLockFlags(rawValue: 0))
// Convert the base address to a safe pointer of the appropriate type
let floatBuffer = unsafeBitCast(CVPixelBufferGetBaseAddress(depthDataMap),
to: UnsafeMutablePointer<Float32>.self)
var min = floatBuffer[0]
var max = floatBuffer[0]
for x in 0..<width{
for y in 0..<height{
let distanceAtXYPoint = floatBuffer[Int(x * y)]
if(distanceAtXYPoint < min){
min = distanceAtXYPoint
}
if(distanceAtXYPoint > max){
max = distanceAtXYPoint
}
}
}
我期望的是数据将反映用户点击图像但不匹配的差异。查找用户点击的视差的代码是 here:
// Apply the filter with the sampleRect from the user’s tap. Don’t forget to clamp!
let minMaxImage = normalized?.clampingToExtent().applyingFilter(
"CIAreaMinMaxRed", withInputParameters:
[kCIInputExtentKey : CIVector(cgRect:rect2)])
// A four-byte buffer to store a single pixel value
var pixel = [UInt8](repeating: 0, count: 4)
// Render the image to a 1x1 rect. Be sure to use a nil color space.
context.render(minMaxImage!, toBitmap: &pixel, rowBytes: 4,
bounds: CGRect(x:0, y:0, width:1, height:1),
format: kCIFormatRGBA8, colorSpace: nil)
// The max is stored in the green channel. Min is in the red.
let disparity = Float(pixel[1]) / 255.0
raywenderlich.com 上有一个名为“Image Depth Maps Tutorial for iOS”的新博客 post,其中包含示例应用程序和与使用深度相关的详细信息。示例代码显示了如何使用 CVPixelBuffer
扩展规范化深度数据:
extension CVPixelBuffer {
func normalize() {
let width = CVPixelBufferGetWidth(self)
let height = CVPixelBufferGetHeight(self)
CVPixelBufferLockBaseAddress(self, CVPixelBufferLockFlags(rawValue: 0))
let floatBuffer = unsafeBitCast(CVPixelBufferGetBaseAddress(self), to: UnsafeMutablePointer<Float>.self)
var minPixel: Float = 1.0
var maxPixel: Float = 0.0
for y in 0 ..< height {
for x in 0 ..< width {
let pixel = floatBuffer[y * width + x]
minPixel = min(pixel, minPixel)
maxPixel = max(pixel, maxPixel)
}
}
let range = maxPixel - minPixel
for y in 0 ..< height {
for x in 0 ..< width {
let pixel = floatBuffer[y * width + x]
floatBuffer[y * width + x] = (pixel - minPixel) / range
}
}
CVPixelBufferUnlockBaseAddress(self, CVPixelBufferLockFlags(rawValue: 0))
}
}
在处理深度数据时要记住,它们的分辨率低于实际图像,因此您需要按比例放大(更多信息请参见博客和 WWDC video)
尝试使用 Accelerate Framework vDSP 向量函数。这是两个函数中的规范化。
将 cvPixel 缓冲区更改为 0..1 标准化范围
myCVPixelBuffer.setUpNormalize()
import Accelerate
extension CVPixelBuffer {
func vectorNormalize( targetVector: UnsafeMutableBufferPointer<Float>) -> [Float] {
// range = max - min
// normalized to 0..1 is (pixel - minPixel) / range
// see Documentation "Using vDSP for Vector-based Arithmetic" in vDSP under system "Accelerate" documentation
// see also the Accelerate documentation section 'Vector extrema calculation'
// Maximium static func maximum<U>(U) -> Float
// Returns the maximum element of a single-precision vector.
//static func minimum<U>(U) -> Float
// Returns the minimum element of a single-precision vector.
let maxValue = vDSP.maximum(targetVector)
let minValue = vDSP.minimum(targetVector)
let range = maxValue - minValue
let negMinValue = -minValue
let subtractVector = vDSP.add(negMinValue, targetVector)
// adding negative value is subtracting
let result = vDSP.divide(subtractVector, range)
return result
}
func setUpNormalize() -> CVPixelBuffer {
// grayscale buffer float32 ie Float
// return normalized CVPixelBuffer
CVPixelBufferLockBaseAddress(self,
CVPixelBufferLockFlags(rawValue: 0))
let width = CVPixelBufferGetWidthOfPlane(self, 0)
let height = CVPixelBufferGetHeightOfPlane(self, 0)
let count = width * height
let bufferBaseAddress = CVPixelBufferGetBaseAddressOfPlane(self, 0)
// UnsafeMutableRawPointer
let pixelBufferBase = unsafeBitCast(bufferBaseAddress, to: UnsafeMutablePointer<Float>.self)
let depthCopy = UnsafeMutablePointer<Float>.allocate(capacity: count)
depthCopy.initialize(from: pixelBufferBase, count: count)
let depthCopyBuffer = UnsafeMutableBufferPointer<Float>(start: depthCopy, count: count)
let normalizedDisparity = vectorNormalize(targetVector: depthCopyBuffer)
pixelBufferBase.initialize(from: normalizedDisparity, count: count)
// copy back the normalized map into the CVPixelBuffer
depthCopy.deallocate()
// depthCopyBuffer.deallocate()
CVPixelBufferUnlockBaseAddress(self, CVPixelBufferLockFlags(rawValue: 0))
return self
}
}
您可以在
的 Apple 示例 'PhotoBrowse' 应用程序的修改版本中看到它的实际效果https://github.com/racewalkWill/PhotoBrowseModified
上面will的回答很好,但是可以改进如下。我将它与照片中的深度数据一起使用,如果深度数据不遵循 16 位,如上文所述,它可能无法工作。还没找到这样的照片。我很惊讶在 Core Image 中没有过滤器来处理这个问题。
extension CVPixelBuffer {
func normalize() {
CVPixelBufferLockBaseAddress(self, CVPixelBufferLockFlags(rawValue: 0))
let width = CVPixelBufferGetWidthOfPlane(self, 0)
let height = CVPixelBufferGetHeightOfPlane(self, 0)
let count = width * height
let pixelBufferBase = unsafeBitCast(CVPixelBufferGetBaseAddressOfPlane(self, 0), to: UnsafeMutablePointer<Float>.self)
let depthCopyBuffer = UnsafeMutableBufferPointer<Float>(start: pixelBufferBase, count: count)
let maxValue = vDSP.maximum(depthCopyBuffer)
let minValue = vDSP.minimum(depthCopyBuffer)
let range = maxValue - minValue
let negMinValue = -minValue
let subtractVector = vDSP.add(negMinValue, depthCopyBuffer)
let normalizedDisparity = vDSP.divide(subtractVector, range)
pixelBufferBase.initialize(from: normalizedDisparity, count: count)
CVPixelBufferUnlockBaseAddress(self, CVPixelBufferLockFlags(rawValue: 0))
}
}