布尔代数 - 如何化简
Boolean Algebra - How to Simplify
在 JS 工作,刚开始学习布尔代数。想知道是否有办法简化这个表达式:
(!variableOne || !variableTwo)
我记得听说过两个 'nots' 意味着你可以更改符号,但是当我 google 'boolean algebra'.
谢谢!
你可以 De Morgan's laws:
!(a && b) = !a || !b
!(a || b) = !a && !b
你的情况是
!(variableOne && variableTwo)
如 De'Morgans Law 所说,您可以将 !a || !b
转换为 !(a && b)
所以你可以 !(variableOne && variableTwo)
回答晚了,但要进一步解释:
- The negation of an and statement is logically equivalent to the or statement in which each component is negated.
象征性地:
!(A && B) = !A || !B
- The negation of an or statement is logically equivalent to the and statement in which each component is negated.
象征性地:
!(A || B) = !A && !B
在你的例子中你使用了 !variableOne || !variableTwo
所以它等同于第一定律 !(variableOne && variableTwo) == !variableOne || !variableTwo
.
在 JS 工作,刚开始学习布尔代数。想知道是否有办法简化这个表达式:
(!variableOne || !variableTwo)
我记得听说过两个 'nots' 意味着你可以更改符号,但是当我 google 'boolean algebra'.
谢谢!
你可以 De Morgan's laws:
!(a && b) = !a || !b
!(a || b) = !a && !b
你的情况是
!(variableOne && variableTwo)
如 De'Morgans Law 所说,您可以将 !a || !b
转换为 !(a && b)
所以你可以 !(variableOne && variableTwo)
回答晚了,但要进一步解释:
- The negation of an and statement is logically equivalent to the or statement in which each component is negated.
象征性地:
!(A && B) = !A || !B
- The negation of an or statement is logically equivalent to the and statement in which each component is negated.
象征性地:
!(A || B) = !A && !B
在你的例子中你使用了 !variableOne || !variableTwo
所以它等同于第一定律 !(variableOne && variableTwo) == !variableOne || !variableTwo
.