Pandas 多索引从长到宽格式

Pandas long to wide format with multi-index

我有一个如下所示的数据框:

data.head()
Out[2]: 
        Area Area Id                  Variable Name Variable Id  Year  \
0  Argentina       9  Conservation agriculture area        4454  1982   
1  Argentina       9  Conservation agriculture area        4454  1987   
2  Argentina       9  Conservation agriculture area        4454  1992   
3  Argentina       9  Conservation agriculture area        4454  1997   
4  Argentina       9  Conservation agriculture area        4454  2002   
     Value Symbol Md  
0      2.0            
1      6.0            
2    500.0       

我想旋转 Variable Name 是列,AreaYear 是索引,Value 是值。对我来说最直观的方法是使用:

data.pivot(index=['Area', 'Year'], columns='Variable Name', values='Value)

但是我收到错误:

Traceback (most recent call last):
  File "C:\Users\patri\Miniconda3\lib\site-packages\IPython\core\interactiveshell.py", line 2862, in run_code
    exec(code_obj, self.user_global_ns, self.user_ns)
  File "<ipython-input-4-4c786386b703>", line 1, in <module>
    pd.concat(data_list).pivot(index=['Area', 'Year'], columns='Variable Name', values='Value')
  File "C:\Users\patri\Miniconda3\lib\site-packages\pandas\core\frame.py", line 3853, in pivot
    return pivot(self, index=index, columns=columns, values=values)
  File "C:\Users\patri\Miniconda3\lib\site-packages\pandas\core\reshape\reshape.py", line 377, in pivot
    index=MultiIndex.from_arrays([index, self[columns]]))
  File "C:\Users\patri\Miniconda3\lib\site-packages\pandas\core\series.py", line 250, in __init__
    data = SingleBlockManager(data, index, fastpath=True)
  File "C:\Users\patri\Miniconda3\lib\site-packages\pandas\core\internals.py", line 4117, in __init__
    fastpath=True)
  File "C:\Users\patri\Miniconda3\lib\site-packages\pandas\core\internals.py", line 2719, in make_block
    return klass(values, ndim=ndim, fastpath=fastpath, placement=placement)
  File "C:\Users\patri\Miniconda3\lib\site-packages\pandas\core\internals.py", line 1844, in __init__
    placement=placement, **kwargs)
  File "C:\Users\patri\Miniconda3\lib\site-packages\pandas\core\internals.py", line 115, in __init__
    len(self.mgr_locs)))
ValueError: Wrong number of items passed 119611, placement implies 2

我该如何解释?我也尝试过另一种方式:

data.set_index(['Area', 'Variable Name', 'Year']).loc[:, 'Value'].unstack('Variable Name')

尝试获得相同的结果,但出现此错误:

Traceback (most recent call last):
  File "C:\Users\patri\Miniconda3\lib\site-packages\IPython\core\interactiveshell.py", line 2862, in run_code
    exec(code_obj, self.user_global_ns, self.user_ns)
  File "<ipython-input-5-222325ea01e1>", line 1, in <module>
    pd.concat(data_list).set_index(['Area', 'Variable Name', 'Year']).loc[:, 'Value'].unstack('Variable Name')
  File "C:\Users\patri\Miniconda3\lib\site-packages\pandas\core\series.py", line 2028, in unstack
    return unstack(self, level, fill_value)
  File "C:\Users\patri\Miniconda3\lib\site-packages\pandas\core\reshape\reshape.py", line 458, in unstack
    fill_value=fill_value)
  File "C:\Users\patri\Miniconda3\lib\site-packages\pandas\core\reshape\reshape.py", line 110, in __init__
    self._make_selectors()
  File "C:\Users\patri\Miniconda3\lib\site-packages\pandas\core\reshape\reshape.py", line 148, in _make_selectors
    raise ValueError('Index contains duplicate entries, '
ValueError: Index contains duplicate entries, cannot reshape

数据有问题吗?我已经确认在数据框的任何行中没有 AreaVariable NameYear 的重复组合,所以我认为不应该有任何重复的条目,但我可能是错的。鉴于这两种方法目前都不起作用,我如何从长格式转换为宽格式?我检查了答案 and ,但它们都是涉及某种类型 I 聚合的情况。

我试过像这样使用 pivot_table

data.pivot_table(index=['Area', 'Year'], columns='Variable Name', values='Value')

但我认为正在进行某种类型的聚合并且数据集中有很多缺失值导致此错误:

Traceback (most recent call last):
  File "C:\Users\patri\Miniconda3\lib\site-packages\IPython\core\interactiveshell.py", line 2862, in run_code
    exec(code_obj, self.user_global_ns, self.user_ns)
  File "<ipython-input-7-77b28d2f0dbb>", line 1, in <module>
    pd.concat(data_list).pivot_table(index=['Area', 'Year'], columns='Variable Name', values='Value')
  File "C:\Users\patri\Miniconda3\lib\site-packages\pandas\core\reshape\pivot.py", line 136, in pivot_table
    agged = grouped.agg(aggfunc)
  File "C:\Users\patri\Miniconda3\lib\site-packages\pandas\core\groupby.py", line 4036, in aggregate
    return super(DataFrameGroupBy, self).aggregate(arg, *args, **kwargs)
  File "C:\Users\patri\Miniconda3\lib\site-packages\pandas\core\groupby.py", line 3468, in aggregate
    result, how = self._aggregate(arg, _level=_level, *args, **kwargs)
  File "C:\Users\patri\Miniconda3\lib\site-packages\pandas\core\base.py", line 435, in _aggregate
    **kwargs), None
  File "C:\Users\patri\Miniconda3\lib\site-packages\pandas\core\base.py", line 391, in _try_aggregate_string_function
    return f(*args, **kwargs)
  File "C:\Users\patri\Miniconda3\lib\site-packages\pandas\core\groupby.py", line 1037, in mean
    return self._cython_agg_general('mean', **kwargs)
  File "C:\Users\patri\Miniconda3\lib\site-packages\pandas\core\groupby.py", line 3354, in _cython_agg_general
    how, alt=alt, numeric_only=numeric_only)
  File "C:\Users\patri\Miniconda3\lib\site-packages\pandas\core\groupby.py", line 3425, in _cython_agg_blocks
    raise DataError('No numeric types to aggregate')
pandas.core.base.DataError: No numeric types to aggregate

我认为您需要先将列 Value 转换为数字,然后将 pivot_table 与默认聚合函数一起使用 mean:

#if all float data saved as strings
data['Value'] = data['Value'].astype(float)
#if some bad data like strings and first method return value error
data['Value'] = pd.to_numeric(data['Value'], errors='coerce')

data.pivot_table(index=['Area', 'Year'], columns='Variable Name', values='Value')

或者:

data.groupby(['Area', 'Variable Name', 'Year'])[ 'Value'].mean().unstack('Variable Name')