PolyKinds 的种类变量不明确

Ambiguous kind variable with PolyKinds

给定以下代码

{-# LANGUAGE GeneralizedNewtypeDeriving #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE PolyKinds #-}

type family Tagged (m :: * -> *) :: k

class Example (t :: k) (a :: *) where
  type Return t a
  a :: (Monad m, Tagged m ~ t) => a -> m (Return t a)

data A
data A' a
data B = B

instance Example A B where
  type Return A B = ()
  a B = return ()

-- This is why I want a PolyKinded 't'
instance Example A' B where
  type Return A' B = ()
  a B = return ()

我收到类型错误(指向行 a :: (Monad m ...

• Could not deduce: Return (Tagged m) a ~ Return t a
  from the context: (Example t a, Monad m, Tagged m ~ t)
    bound by the type signature for:
               a :: (Example t a, Monad m, Tagged m ~ t) =>
                    a -> m (Return t a)
...
  Expected type: a -> m (Return t a)
    Actual type: a -> m (Return (Tagged m) a)
  NB: ‘Return’ is a type function, and may not be injective
  The type variable ‘k0’ is ambiguous
• In the ambiguity check for ‘a’
  To defer the ambiguity check to use sites, enable AllowAmbiguousTypes
  When checking the class method:
    a :: forall k (t :: k) a.
         Example t a =>
         forall (m :: * -> *).
         (Monad m, Tagged m ~ t) =>
         a -> m (Return t a)
  In the class declaration for ‘Example’

我可以用 Proxy ta 引入一个参数,只要我在调用站点提供签名,这就可以工作:test = a (Proxy :: Proxy A) B 但这就是我想要的避免。我想要的是

newtype Test t m a = Test
  { runTest :: m a
  } deriving (Functor, Applicative, Monad)

type instance Tagged (Test t m) = t

test :: Monad m => Test A m ()
test = a B

我希望使用类型实例从上下文 Test A m () 中找到 t。鉴于模块将在删除种类注释 PolyKindsA' 的实例后进行编译,这似乎应该是可能的。 k0 来自哪里?

我想解决方法是放弃 PolyKinds 并使用额外的数据类型,如 data ATag; data A'Tag; data BTag

这只是部分答案。

我试着把种类说清楚了。

type family Tagged k (m :: * -> *) :: k

class Example k (t :: k) (a :: *) where
  type Return k (t :: k) (a :: *)
  a :: forall m . (Monad m, Tagged k m ~ t) => a -> m (Return k t a)

而且,在启用许多扩展后,观察到这一点:

> :t a
a :: (Example k (Tagged k m) a, Monad m) =>
     a -> m (Return k (Tagged k m) a)

因此,编译器会报错,因为实例 Example k (Tagged k m) a 不能由 a,m 单独确定。也就是我们不知道如何选择k.

我想,从技术上讲,我们可能有不同的 Example k (Tagged k m) a 个实例,例如一个用于 k=*,另一个用于 k=(*->*)

直觉上,知道 t 应该可以让我们找到 k,但是 Return 是非单射的,这会阻止我们找到 t.