估算中间缺失值

Impute Intermediate Missing Values

我有组级别的数据。 data 看起来像下面这样。

我的实际数据是 "Value" & 所需数据是 "Expected_Value".

我尝试了以下代码:

setDT(file_to_share)[,Expected_Value := na.locf(na.locf(Value, na.rm=FALSE), fromLast=TRUE),by = c("Group_A",   "Group_B")]

但在此代码中,插补是针对整个缺失值完成的。如果缺失值介于两个值之间,我想计算缺失值。缺失值将是先前可用值的复制。

如果有人能指导我怎么做,那将是一个很大的帮助。

注意 :我尝试使用 data.tablezoo 进行计算。但任何其他方法也可以。

即使您正在寻找 data.table 解决方案,这里也有一个使用 tidyverse 方法的解决方案。 (如果时间允许,我可能会尝试翻译成 data.table)。

我们的想法是创建一个分组变量来捕获您的星期以及 fill GroupA、GroupB 和星期分组下的值(此处称为 grp)。我们还从最后创建了 Valuefill 的副本(tidyr 术语是 .direction = 'up')。然后,我们使用 NA 值的累积总和创建另一个分组变量,并在假设新组大小 (Group_A, GROUP_Bgrpgrp1) 为 1,其 value1NA。这给出了预期的结果。

library(tidyverse)

df2 <- df1 %>% 
  mutate(Date = as.POSIXct(Date, format = '%m/%d/%Y')) %>% 
  mutate(value1 = Value) %>%
  group_by(Group_A, GROUP_B, grp = cumsum(format(Date, '%d')=='01'))%>% 
  fill(Value) %>% 
  fill(value1, .direction = 'up') %>% 
  mutate(grp1 = cumsum(is.na(Value))) %>% 
  group_by(Group_A, GROUP_B, grp, grp1) %>% 
  mutate(new = n(), Value = replace(Value, new == 1 | is.na(value1), NA)) %>%
  ungroup() %>%
  select(-c(value1, grp, grp1, new))

这给出了,

# A tibble: 42 × 5
   Group_A   GROUP_B       Date Value Expected_Value
     <chr>     <chr>     <dttm> <int>          <int>
1  GROUP_1 Group_1_1 2017-01-01    NA             NA
2  GROUP_1 Group_1_1 2017-01-02    NA             NA
3  GROUP_1 Group_1_1 2017-01-03    34             34
4  GROUP_1 Group_1_1 2017-01-04    20             20
5  GROUP_1 Group_1_1 2017-01-05    20             20
6  GROUP_1 Group_1_1 2017-01-06    20             20
7  GROUP_1 Group_1_1 2017-01-07    38             38
8  GROUP_1 Group_1_2 2017-01-01    35             35
9  GROUP_1 Group_1_2 2017-01-02    28             28
10 GROUP_1 Group_1_2 2017-01-03    28             28
# ... with 32 more rows
#Where,

identical(df2$Value, df2$Expected_Value)
#[1] TRUE

OP 已请求仅填写 NA 个值,这些值介于每个组中的其他值之间。这意味着在应用 zoo::na.locf().

时跳过每组开始或结束处的任何 NA 值序列

使用 data.table,这可以通过识别要跳过的行的索引和一种 anti-join:

来完成
library(data.table)
setDT(DT)[!DT[, {
  na_grp <- rleid(is.na(Value))
  .I[na_grp %in% c(1L, max(na_grp))]
}, by = .(Group_A, GROUP_B)]$V1, Value := zoo::na.locf(Value)][]
    Group_A    GROUP_B     Date Value Expected_Value
 1: GROUP_1  Group_1_1 1/1/2017    NA             NA
 2: GROUP_1  Group_1_1 1/2/2017    NA             NA
 3: GROUP_1  Group_1_1 1/3/2017    34             34
 4: GROUP_1  Group_1_1 1/4/2017    20             20
 5: GROUP_1  Group_1_1 1/5/2017    20             20
 6: GROUP_1  Group_1_1 1/6/2017    20             20
 7: GROUP_1  Group_1_1 1/7/2017    38             38
 8: GROUP_1  Group_1_2 1/1/2017    35             35
 9: GROUP_1  Group_1_2 1/2/2017    28             28
10: GROUP_1  Group_1_2 1/3/2017    20             28
11: GROUP_1  Group_1_2 1/4/2017    32             32
12: GROUP_1  Group_1_2 1/5/2017    39             39
13: GROUP_1  Group_1_2 1/6/2017    28             28
14: GROUP_1  Group_1_2 1/7/2017    NA             NA
15: GROUP_2 Group_1_11 1/1/2017    NA             NA
16: GROUP_2 Group_1_11 1/2/2017    NA             NA
17: GROUP_2 Group_1_11 1/3/2017    40             40
18: GROUP_2 Group_1_11 1/4/2017    32             32
19: GROUP_2 Group_1_11 1/5/2017    20             20
20: GROUP_2 Group_1_11 1/6/2017    NA             NA
21: GROUP_2 Group_1_11 1/7/2017    NA             NA
22: GROUP_2 Group_1_21 1/1/2017    NA             NA
23: GROUP_2 Group_1_21 1/2/2017    32             32
24: GROUP_2 Group_1_21 1/3/2017    36             36
25: GROUP_2 Group_1_21 1/4/2017    36             36
26: GROUP_2 Group_1_21 1/5/2017    28             28
27: GROUP_2 Group_1_21 1/6/2017    33             33
28: GROUP_2 Group_1_21 1/7/2017    40             40
29: GROUP_3 Group_1_13 1/1/2017    NA             NA
30: GROUP_3 Group_1_13 1/2/2017    NA             NA
31: GROUP_3 Group_1_13 1/3/2017    NA             NA
32: GROUP_3 Group_1_13 1/4/2017    29             29
33: GROUP_3 Group_1_13 1/5/2017    31             31
34: GROUP_3 Group_1_13 1/6/2017    31             31
35: GROUP_3 Group_1_13 1/7/2017    34             34
36: GROUP_3 Group_1_23 1/1/2017    26             26
37: GROUP_3 Group_1_23 1/2/2017    33             33
38: GROUP_3 Group_1_23 1/3/2017    27             27
39: GROUP_3 Group_1_23 1/4/2017    23             23
40: GROUP_3 Group_1_23 1/5/2017    25             25
41: GROUP_3 Group_1_23 1/6/2017    41             41
42: GROUP_3 Group_1_23 1/7/2017    25             25
    Group_A    GROUP_B     Date Value Expected_Value

说明

  • 对于每个组,NA/非NA值的条纹被编号
  • 挑选每组中的第一个和最后一个条纹,并从特殊符号 .I 中检索索引。 (由于 Value 就地 进行更新,因此第一个或最后一个连胜是否包含 NA 并不重要;无论如何它们都不会更新。)
  • 找到的索引
    DT[, {na_grp <- rleid(is.na(Value)); .I[na_grp %in% c(1L, max(na_grp))]}, by = .(Group_A, GROUP_B)]$V1
    被排除在外,因此 zoo::na.locf(Value) 仅应用于每个组的“内部”条纹。

数据

DT <- structure(list(Group_A = c("GROUP_1", "GROUP_1", "GROUP_1", "GROUP_1", 
"GROUP_1", "GROUP_1", "GROUP_1", "GROUP_1", "GROUP_1", "GROUP_1", 
"GROUP_1", "GROUP_1", "GROUP_1", "GROUP_1", "GROUP_2", "GROUP_2", 
"GROUP_2", "GROUP_2", "GROUP_2", "GROUP_2", "GROUP_2", "GROUP_2", 
"GROUP_2", "GROUP_2", "GROUP_2", "GROUP_2", "GROUP_2", "GROUP_2", 
"GROUP_3", "GROUP_3", "GROUP_3", "GROUP_3", "GROUP_3", "GROUP_3", 
"GROUP_3", "GROUP_3", "GROUP_3", "GROUP_3", "GROUP_3", "GROUP_3", 
"GROUP_3", "GROUP_3"), GROUP_B = c("Group_1_1", "Group_1_1", 
"Group_1_1", "Group_1_1", "Group_1_1", "Group_1_1", "Group_1_1", 
"Group_1_2", "Group_1_2", "Group_1_2", "Group_1_2", "Group_1_2", 
"Group_1_2", "Group_1_2", "Group_1_11", "Group_1_11", "Group_1_11", 
"Group_1_11", "Group_1_11", "Group_1_11", "Group_1_11", "Group_1_21", 
"Group_1_21", "Group_1_21", "Group_1_21", "Group_1_21", "Group_1_21", 
"Group_1_21", "Group_1_13", "Group_1_13", "Group_1_13", "Group_1_13", 
"Group_1_13", "Group_1_13", "Group_1_13", "Group_1_23", "Group_1_23", 
"Group_1_23", "Group_1_23", "Group_1_23", "Group_1_23", "Group_1_23"
), Date = c("1/1/2017", "1/2/2017", "1/3/2017", "1/4/2017", "1/5/2017", 
"1/6/2017", "1/7/2017", "1/1/2017", "1/2/2017", "1/3/2017", "1/4/2017", 
"1/5/2017", "1/6/2017", "1/7/2017", "1/1/2017", "1/2/2017", "1/3/2017", 
"1/4/2017", "1/5/2017", "1/6/2017", "1/7/2017", "1/1/2017", "1/2/2017", 
"1/3/2017", "1/4/2017", "1/5/2017", "1/6/2017", "1/7/2017", "1/1/2017", 
"1/2/2017", "1/3/2017", "1/4/2017", "1/5/2017", "1/6/2017", "1/7/2017", 
"1/1/2017", "1/2/2017", "1/3/2017", "1/4/2017", "1/5/2017", "1/6/2017", 
"1/7/2017"), Value = c(NA, NA, 34L, 20L, NA, NA, 38L, 35L, 28L, 
NA, 32L, 39L, 28L, NA, NA, NA, 40L, 32L, 20L, NA, NA, NA, 32L, 
36L, NA, 28L, 33L, 40L, NA, NA, NA, 29L, 31L, NA, 34L, 26L, 33L, 
27L, 23L, 25L, 41L, 25L), Expected_Value = c(NA, NA, 34L, 20L, 
20L, 20L, 38L, 35L, 28L, 28L, 32L, 39L, 28L, NA, NA, NA, 40L, 
32L, 20L, NA, NA, NA, 32L, 36L, 36L, 28L, 33L, 40L, NA, NA, NA, 
29L, 31L, 31L, 34L, 26L, 33L, 27L, 23L, 25L, 41L, 25L)), .Names = c("Group_A", 
"GROUP_B", "Date", "Value", "Expected_Value"), row.names = c(NA, 
-42L), class = "data.frame")