Matplotlib:生成多个具有不同和倒比例尺的双轴
Matplotlib: generate multiple twin axes with different and inverted scale
我想在两个 x 轴和 y 轴上绘制一个数据系列,以便有 4 个不同的轴。
首先是 x(以 eV 为单位的能量)与 y(归一化计数)轴,然后是 x(与能量成反比的波长)与 y(计数)轴。
我的代码是:
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.mlab as mlab
from scipy.constants import h, c, e
def E(wavelength):
return (h*c)/(wavelength*e)
wavelen = np.linspace(800e-9,1600e-9,200)
E_eV = E(wavelen)
loc, scale = 950e-9, 3.0
counts = mlab.normpdf(wavelen,950e-9,100e-9)/100
counts_norm = counts/10000
fig, ax = plt.subplots()
ax1 = ax
ax2 = ax.twinx()
ax3 = ax.twiny()
plt.ticklabel_format(style='sci', scilimits=(0,0))
ax1.plot(E_eV, counts_norm)
ax1.set_xlim(E(1600e-9),E(800e-9))
ax1.set_ylabel('normalized counts')
ax1.set_xlabel('energy (eV)')
ax2.plot(E_eV, counts)
ax2.set_xlim(E(1600e-9),E(800e-9))
ax2.set_ylabel('counts')
ax3.plot(wavelen*1e9, counts_norm)
ax3.set_xlim(1600,800)
ax3.set_xlabel('wavelength (nm)')
ax3.ticklabel_format(style='plain')
plt.tight_layout()
plt.show()
如您所见,曲线未以正确的方式缩放,因此它们在 x-direction 中重叠并具有相同的尺寸。
你能帮我如何为顶部的 x(波长)轴设置正确的参数吗?
我建议只在您的主轴上绘图,然后同步双轴的标签。我编辑了您的示例以展示如何为静态图完成此操作。
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.mlab as mlab
from scipy.constants import h, c, e
def E(wavelength):
return (h*c)/(wavelength*e)
def getWaveLength(energy):
return (h*c)/(energy*e)
def getCounts(normcounts):
return normcounts*1000
wavelen = np.linspace(800e-9,1600e-9,200)
E_eV = E(wavelen)
loc, scale = 950e-9, 3.0
counts = mlab.normpdf(wavelen,950e-9,100e-9)/100
counts_norm = counts/10000
fig, ax1 = plt.subplots()
ax2 = ax1.twinx()
ax3 = ax1.twiny()
plt.ticklabel_format(style='sci', scilimits=(0,0))
ax1.plot(E_eV, counts_norm)
ax1.set_xlim(E(1600e-9),E(800e-9))
ax1.set_ylabel('normalized counts')
ax1.set_xlabel('energy (eV)')
ax2.set_ylabel('counts')
ax3.set_xlabel('wavelength (nm)')
ax3.ticklabel_format(style='plain')
# get the primary axis x tick locations in plot units
xtickloc = ax1.get_xticks()
# set the second axis ticks to the same locations
ax3.set_xticks(xtickloc)
# calculate new values for the second axis tick labels, format them, and set them
x2labels = ['{:.3g}'.format(x) for x in getWaveLength(xtickloc)]
ax3.set_xticklabels(x2labels)
# force the bounds to be the same
ax3.set_xlim(ax1.get_xlim())
#same for y
ytickloc = ax1.get_yticks()
ax2.set_yticks(ytickloc)
ax2.set_yticklabels([str(int(y)) for y in getCounts(ytickloc)])
ax2.set_ylim(ax1.get_ylim())
plt.tight_layout()
plt.show()
我想在两个 x 轴和 y 轴上绘制一个数据系列,以便有 4 个不同的轴。 首先是 x(以 eV 为单位的能量)与 y(归一化计数)轴,然后是 x(与能量成反比的波长)与 y(计数)轴。 我的代码是:
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.mlab as mlab
from scipy.constants import h, c, e
def E(wavelength):
return (h*c)/(wavelength*e)
wavelen = np.linspace(800e-9,1600e-9,200)
E_eV = E(wavelen)
loc, scale = 950e-9, 3.0
counts = mlab.normpdf(wavelen,950e-9,100e-9)/100
counts_norm = counts/10000
fig, ax = plt.subplots()
ax1 = ax
ax2 = ax.twinx()
ax3 = ax.twiny()
plt.ticklabel_format(style='sci', scilimits=(0,0))
ax1.plot(E_eV, counts_norm)
ax1.set_xlim(E(1600e-9),E(800e-9))
ax1.set_ylabel('normalized counts')
ax1.set_xlabel('energy (eV)')
ax2.plot(E_eV, counts)
ax2.set_xlim(E(1600e-9),E(800e-9))
ax2.set_ylabel('counts')
ax3.plot(wavelen*1e9, counts_norm)
ax3.set_xlim(1600,800)
ax3.set_xlabel('wavelength (nm)')
ax3.ticklabel_format(style='plain')
plt.tight_layout()
plt.show()
如您所见,曲线未以正确的方式缩放,因此它们在 x-direction 中重叠并具有相同的尺寸。 你能帮我如何为顶部的 x(波长)轴设置正确的参数吗?
我建议只在您的主轴上绘图,然后同步双轴的标签。我编辑了您的示例以展示如何为静态图完成此操作。
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.mlab as mlab
from scipy.constants import h, c, e
def E(wavelength):
return (h*c)/(wavelength*e)
def getWaveLength(energy):
return (h*c)/(energy*e)
def getCounts(normcounts):
return normcounts*1000
wavelen = np.linspace(800e-9,1600e-9,200)
E_eV = E(wavelen)
loc, scale = 950e-9, 3.0
counts = mlab.normpdf(wavelen,950e-9,100e-9)/100
counts_norm = counts/10000
fig, ax1 = plt.subplots()
ax2 = ax1.twinx()
ax3 = ax1.twiny()
plt.ticklabel_format(style='sci', scilimits=(0,0))
ax1.plot(E_eV, counts_norm)
ax1.set_xlim(E(1600e-9),E(800e-9))
ax1.set_ylabel('normalized counts')
ax1.set_xlabel('energy (eV)')
ax2.set_ylabel('counts')
ax3.set_xlabel('wavelength (nm)')
ax3.ticklabel_format(style='plain')
# get the primary axis x tick locations in plot units
xtickloc = ax1.get_xticks()
# set the second axis ticks to the same locations
ax3.set_xticks(xtickloc)
# calculate new values for the second axis tick labels, format them, and set them
x2labels = ['{:.3g}'.format(x) for x in getWaveLength(xtickloc)]
ax3.set_xticklabels(x2labels)
# force the bounds to be the same
ax3.set_xlim(ax1.get_xlim())
#same for y
ytickloc = ax1.get_yticks()
ax2.set_yticks(ytickloc)
ax2.set_yticklabels([str(int(y)) for y in getCounts(ytickloc)])
ax2.set_ylim(ax1.get_ylim())
plt.tight_layout()
plt.show()