MiniZinc 中的基数约束

Cardinality constraints in MiniZinc

MiniZinc constraint solver allows to express cardinality constraints 很容易使用内置的 sum() 函数:

%  This predicate is true, iff 2 of the array
%  elements are true
predicate exactly_two_sum(array[int] of var bool: x) =
    (sum(x) == 2);

满足基数约束条件,当且仅当布尔变量数组中的 true 元素数与指定的相同。布尔值自动映射到整数值 01 以计算总和。

我将自己的基数约束谓词实现为一组计数器切片:

%  This predicate is true, iff 2 of the array
%  elements are true
predicate exactly_two_serial(array[int] of var bool: x) =
    let 
    {
      int: lb = min(index_set(x));
      int: ub = max(index_set(x));
      int: len = length(x);
    }
    in
    if len < 2 then
      false
    else if len == 2 then
      x[lb] /\ x[ub]
    else
      (
        let 
        {
          %  1-of-3 counter is modelled as a set of slices
          %  with 3 outputs each
          array[lb+1..ub-1] of var bool: t0;
          array[lb+1..ub-1] of var bool: t1;
          array[lb+1..ub-1] of var bool: t2;
        }
        in
        %  first two slices are hard-coded
        (t0[lb+1] == not(x[lb] \/ x[lb+1])) /\
        (t1[lb+1] == (x[lb] != x[lb+1])) /\
        (t2[lb+1] == (x[lb] /\ x[lb+1])) /\
        %   remaining slices are regular
        forall(i in lb+2..ub-1)
        (
          (t0[i] == t0[i-1] /\ not x[i]) /\
          (t1[i] == (t0[i-1] /\ x[i]) \/ (t1[i-1] /\ not x[i])) /\
          (t2[i] == (t1[i-1] /\ x[i]) \/ (t2[i-1] /\ not x[i])) 
        ) /\
        %  output 2 of final slice must be true to fulfil predicate
        ((t1[ub-1] /\ x[ub]) \/ (t2[ub-1] /\ not x[ub]))
      )
    endif endif;

此实现使用并行编码,切片之间 lines/variables 较少:

%  This predicate is true, iff 2 of the array
%  elements are true
predicate exactly_two_parallel(array[int] of var bool: x) =
    let 
    {
      int: lb = min(index_set(x));
      int: ub = max(index_set(x));
      int: len = length(x);
    }
    in
    if len < 2 then
      false
    else if len == 2 then
      x[lb] /\ x[ub]
    else
      (
        let 
        {
          %  counter is modelled as a set of slices
          %  with 2 outputs each
          %  Encoding:
          %  0 0 : 0 x true
          %  0 1 : 1 x true
          %  1 0 : 2 x true
          %  1 1 : more than 2 x true
          array[lb+1..ub] of var bool: t0;
          array[lb+1..ub] of var bool: t1;
        }
        in
        %  first two slices are hard-coded
        (t1[lb+1] == (x[lb] /\ x[lb+1])) /\
        (t0[lb+1] == not t1[lb+1]) /\
        %   remaining slices are regular
        forall(i in lb+2..ub)
        (
          (t0[i] == (t0[i-1] != x[i]) \/ (t0[i-1] /\ t1[i-1])) /\
          (t1[i] == t1[i-1] \/ (t0[i-1] /\ x[i])) 
        ) /\
        %  output of final slice must be  1 0 to fulfil predicate
        (t1[ub] /\ not t0[ub])
      )
    endif endif;

问题:

Does it make sense to use home-grown cardinality predicates? Or is the MiniZinc implementation of sum() beyond all doubts in terms of solution speed?

更新:
我正在使用 Gecode 作为求解器后端。

线性求和通常是在约束求解器中实现良好的最重要约束之一,因此对于您的情况,使用简单求和的初始版本要好得多。特别是,Gecode 中实现布尔求和的传播器经过大量优化以尽可能高效。

一般来说,使用可用的约束通常是个好主意。特别是,如果一个人正在做的事情很好地映射到 global constraint that is typically a good idea. A related example would be if you want to count the occurrences of several different numbers in an array of integers, in which case the global cardinality constraint 是非常有用的。

为了完整性:当使用惰性子句生成求解器(例如 Chuffed)时,(新颖的)分解有时可能非常有用。但这是一个更高级的话题。