Python OpenCV - 检测眼睛并保存
Python OpenCV - Detect eyes and save
我是 OpenCV 新手。我需要使用 opencv 检测眼睛并将它们保存在文件夹中以供进一步分类。我为此编写了以下脚本:
import numpy as np
import cv2
face_cascade = cv2.CascadeClassifier('haarcascade_frontalface_default.xml')
eye_cascade = cv2.CascadeClassifier('haarcascade_eye.xml')
cap = cv2.VideoCapture(0)
while True:
ret, img = cap.read()
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
faces = face_cascade.detectMultiScale(gray, 1.3, 5)
count=1
for (x,y,w,h) in faces:
cv2.rectangle(img,(x,y),(x+w,y+h),(255,0,0),2)
roi_gray = gray[y:y+h, x:x+w]
roi_color = img[y:y+h, x:x+w]
eyes = eye_cascade.detectMultiScale(roi_gray)
for (ex,ey,ew,eh) in eyes:
crop_img = roi_color[ey: ey + eh, ex: ex + ew]
cv2.rectangle(roi_color,(ex,ey),(ex+ew,ey+eh),(0,255,0),2)
s="{0}.jpg"
s1='/home/kushal/Pictures/Webcam/'+s.format(count)
count=count+1
cv2.imwrite(s1,crop_img)
cv2.imshow('img',img)
k = cv2.waitKey(30) & 0xff
if k == 27:
break
cap.release()
cv2.destroyAllWindows()
我想保存尽可能多的眼睛图像。但我只保存了 3-4 张眼睛图像。是否有可能每秒获取一帧或一张图像?这段代码应该做哪些修改?
将 count=1
移到 while-loop
之外。
count = 1
while True:
pass
#your code
cv2.imshow
的缩进不太正确。
import numpy as np
import cv2
face_cascade = cv2.CascadeClassifier('haarcascade_frontalface_default.xml')
eye_cascade = cv2.CascadeClassifier('haarcascade_eye.xml')
cap = cv2.VideoCapture(0)
count=1
while True:
ret, img = cap.read()
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
faces = face_cascade.detectMultiScale(gray, 1.2, 5)
for (x,y,w,h) in faces:
cv2.rectangle(img,(x,y),(x+w,y+h),(255,0,0),2)
roi_gray = gray[y:y+h, x:x+w]
roi_color = img[y:y+h, x:x+w]
eyes = eye_cascade.detectMultiScale(roi_gray)
for (ex,ey,ew,eh) in eyes:
print(count)
crop_img = roi_color[ey: ey + eh, ex: ex + ew]
cv2.rectangle(roi_color,(ex,ey),(ex+ew,ey+eh),(0,255,0),2)
s1='tmp/{}.jpg'.format(count)
count=count+1
cv2.imwrite(s1,crop_img)
cv2.imshow('img',img)
k = cv2.waitKey(30) & 0xff
if k == 27:
break
cap.release()
cv2.destroyAllWindows()
参考之前的回答,你也可以尝试改变haar-cascade滑动的比例因子window。
此时您可能已经发现您的图库中存在误报,即非眼睛图像被 haar-cascade 检测为眼睛。所以我建议尝试 D-lib,因为它可以获得更准确的结果。大家可以尝试从d-lib库提供的68个人脸界标点裁剪感兴趣区域。为了你的reference.
我是 OpenCV 新手。我需要使用 opencv 检测眼睛并将它们保存在文件夹中以供进一步分类。我为此编写了以下脚本:
import numpy as np
import cv2
face_cascade = cv2.CascadeClassifier('haarcascade_frontalface_default.xml')
eye_cascade = cv2.CascadeClassifier('haarcascade_eye.xml')
cap = cv2.VideoCapture(0)
while True:
ret, img = cap.read()
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
faces = face_cascade.detectMultiScale(gray, 1.3, 5)
count=1
for (x,y,w,h) in faces:
cv2.rectangle(img,(x,y),(x+w,y+h),(255,0,0),2)
roi_gray = gray[y:y+h, x:x+w]
roi_color = img[y:y+h, x:x+w]
eyes = eye_cascade.detectMultiScale(roi_gray)
for (ex,ey,ew,eh) in eyes:
crop_img = roi_color[ey: ey + eh, ex: ex + ew]
cv2.rectangle(roi_color,(ex,ey),(ex+ew,ey+eh),(0,255,0),2)
s="{0}.jpg"
s1='/home/kushal/Pictures/Webcam/'+s.format(count)
count=count+1
cv2.imwrite(s1,crop_img)
cv2.imshow('img',img)
k = cv2.waitKey(30) & 0xff
if k == 27:
break
cap.release()
cv2.destroyAllWindows()
我想保存尽可能多的眼睛图像。但我只保存了 3-4 张眼睛图像。是否有可能每秒获取一帧或一张图像?这段代码应该做哪些修改?
将 count=1
移到 while-loop
之外。
count = 1
while True:
pass
#your code
cv2.imshow
的缩进不太正确。
import numpy as np
import cv2
face_cascade = cv2.CascadeClassifier('haarcascade_frontalface_default.xml')
eye_cascade = cv2.CascadeClassifier('haarcascade_eye.xml')
cap = cv2.VideoCapture(0)
count=1
while True:
ret, img = cap.read()
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
faces = face_cascade.detectMultiScale(gray, 1.2, 5)
for (x,y,w,h) in faces:
cv2.rectangle(img,(x,y),(x+w,y+h),(255,0,0),2)
roi_gray = gray[y:y+h, x:x+w]
roi_color = img[y:y+h, x:x+w]
eyes = eye_cascade.detectMultiScale(roi_gray)
for (ex,ey,ew,eh) in eyes:
print(count)
crop_img = roi_color[ey: ey + eh, ex: ex + ew]
cv2.rectangle(roi_color,(ex,ey),(ex+ew,ey+eh),(0,255,0),2)
s1='tmp/{}.jpg'.format(count)
count=count+1
cv2.imwrite(s1,crop_img)
cv2.imshow('img',img)
k = cv2.waitKey(30) & 0xff
if k == 27:
break
cap.release()
cv2.destroyAllWindows()
参考之前的回答,你也可以尝试改变haar-cascade滑动的比例因子window。
此时您可能已经发现您的图库中存在误报,即非眼睛图像被 haar-cascade 检测为眼睛。所以我建议尝试 D-lib,因为它可以获得更准确的结果。大家可以尝试从d-lib库提供的68个人脸界标点裁剪感兴趣区域。为了你的reference.