神经网络不产生结果
Neural network not producing results
这是我的项目。它包括: m = 24 其中 m 是训练示例的数量; 3个隐藏层和输入层;连接每一层的3组权重;数据为 1x38,响应为 y (1x1)。
import numpy as np
x = np.array([
[1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0],
[1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0],
[1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0],
[1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0],
[0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0],
[1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0],
[1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0],
[1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0],
[1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0],
[1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1],
[1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1],
[1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0],
[1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0],
[1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0],
[0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0],
[1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1],
[1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0],
[0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0],
[1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0],
[0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0],
[1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0],
[1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0],
[1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0],
[0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0]])
y = np.array([
[1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1,0]]).T
w = np.random.random((38, 39))
w2 = np.random.random((39, 39))
w3 = np.random.random((39, 1))
for j in xrange(100000):
a2 = 1/(1 + np.exp(-(np.dot(x, w) + 1)))
a3 = 1/(1 + np.exp(-(np.dot(a2, w2) + 1)))
a4 = 1/(1 + np.exp(-(np.dot(a3, w3) + 1)))
a4delta = (y - a4) * (1 * (1 - a4))
a3delta = a4delta.dot(w3.T) * (1 * (1 - a3))
a2delta = a3delta.dot(w2.T) * (1 * (1 - a2))
w3 += a3.T.dot(a4delta)
w2 += a2.T.dot(a3delta)
w += x.T.dot(a2delta)
print(a4)
结果如下:
[[ 1.]
[ 1.]
[ 1.]
[ 1.]
[ 1.]
[ 1.]
[ 1.]
[ 1.]
[ 1.]
[ 1.]
[ 1.]
[ 1.]
[ 1.]
[ 1.]
[ 1.]
[ 1.]
[ 1.]
[ 1.]
[ 1.]
[ 1.]
[ 1.]
[ 1.]
[ 1.]
[ 1.]]
谁能看看我有没有做错?我的网络需要更改吗?我尝试通过添加更多隐藏层和更多内存来试验超参数
你有一些错误,有些事情我认为是错误的,但也许只是不同的实现。
您将梯度添加到权重中,而您应该减去乘以步长的梯度。这就是为什么您的权重仅在一次迭代中就飙升至 1.0 的原因。
这些:
w3 += a3.T.dot(a4delta)
应该是这样的:
w3 -= addBias(a3).T.dot(a4delta) * step
此外,我认为您对 sigmoid 函数的偏导数没有正确的表述。我认为这些:
a3delta = a4delta.dot(w3.T) * (1 * (1 - a3))
应该是:
a3delta = a4delta.dot(w3.T) * (a3 * (1 - a3))
您还应该使用类似以下内容将您的权重初始化为零:
ep = 0.12
w = np.random.random((39, 39)) * 2 * ep - ep
大多数实现都会向每一层添加一个偏置节点,而您并没有这样做。它使事情变得有点复杂,但我认为它会使它收敛得更快。
对我来说,这会在 200 次迭代中收敛到一个自信的答案:
# Weights have different shapes to account for bias node
w = np.random.random((39, 39)) * 2 * ep - ep
w2 = np.random.random((40, 39))* 2 * ep - ep
w3 = np.random.random((40, 1)) * 2 * ep - ep
ep = 0.12
w = np.random.random((39, 39)) * 2 * ep - ep
w2 = np.random.random((40, 39))* 2 * ep - ep
w3 = np.random.random((40, 1)) * 2 * ep - ep
def addBias(mat):
return np.hstack((np.ones((mat.shape[0], 1)), mat))
step = -.1
for j in range(200):
# Forward prop
a2 = 1/(1 + np.exp(- addBias(x).dot(w)))
a3 = 1/(1 + np.exp(- addBias(a2).dot(w2)))
a4 = 1/(1 + np.exp(- addBias(a3).dot(w3)))
# Back prop
a4delta = (y - a4)
# need to remove bias nodes here
a3delta = a4delta.dot(w3[1:,:].T) * (a3 * (1 - a3))
a2delta = a3delta.dot(w2[1:,:].T) * (a2 * (1 - a2))
# Gradient Descent
# Multiply gradient by step then subtract
w3 -= addBias(a3).T.dot(a4delta) * step
w2 -= addBias(a2).T.dot(a3delta) * step
w -= addBias(x).T.dot(a2delta) * step
print(np.rint(a4))
这是我的项目。它包括: m = 24 其中 m 是训练示例的数量; 3个隐藏层和输入层;连接每一层的3组权重;数据为 1x38,响应为 y (1x1)。
import numpy as np
x = np.array([
[1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0],
[1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0],
[1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0],
[1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0],
[0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0],
[1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0],
[1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0],
[1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0],
[1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0],
[1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1],
[1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1],
[1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0],
[1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0],
[1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0],
[0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0],
[1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1],
[1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0],
[0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0],
[1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0],
[0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0],
[1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0],
[1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0],
[1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0],
[0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0]])
y = np.array([
[1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1,0]]).T
w = np.random.random((38, 39))
w2 = np.random.random((39, 39))
w3 = np.random.random((39, 1))
for j in xrange(100000):
a2 = 1/(1 + np.exp(-(np.dot(x, w) + 1)))
a3 = 1/(1 + np.exp(-(np.dot(a2, w2) + 1)))
a4 = 1/(1 + np.exp(-(np.dot(a3, w3) + 1)))
a4delta = (y - a4) * (1 * (1 - a4))
a3delta = a4delta.dot(w3.T) * (1 * (1 - a3))
a2delta = a3delta.dot(w2.T) * (1 * (1 - a2))
w3 += a3.T.dot(a4delta)
w2 += a2.T.dot(a3delta)
w += x.T.dot(a2delta)
print(a4)
结果如下:
[[ 1.]
[ 1.]
[ 1.]
[ 1.]
[ 1.]
[ 1.]
[ 1.]
[ 1.]
[ 1.]
[ 1.]
[ 1.]
[ 1.]
[ 1.]
[ 1.]
[ 1.]
[ 1.]
[ 1.]
[ 1.]
[ 1.]
[ 1.]
[ 1.]
[ 1.]
[ 1.]
[ 1.]]
谁能看看我有没有做错?我的网络需要更改吗?我尝试通过添加更多隐藏层和更多内存来试验超参数
你有一些错误,有些事情我认为是错误的,但也许只是不同的实现。
您将梯度添加到权重中,而您应该减去乘以步长的梯度。这就是为什么您的权重仅在一次迭代中就飙升至 1.0 的原因。
这些:
w3 += a3.T.dot(a4delta)
应该是这样的:
w3 -= addBias(a3).T.dot(a4delta) * step
此外,我认为您对 sigmoid 函数的偏导数没有正确的表述。我认为这些:
a3delta = a4delta.dot(w3.T) * (1 * (1 - a3))
应该是:
a3delta = a4delta.dot(w3.T) * (a3 * (1 - a3))
您还应该使用类似以下内容将您的权重初始化为零:
ep = 0.12
w = np.random.random((39, 39)) * 2 * ep - ep
大多数实现都会向每一层添加一个偏置节点,而您并没有这样做。它使事情变得有点复杂,但我认为它会使它收敛得更快。
对我来说,这会在 200 次迭代中收敛到一个自信的答案:
# Weights have different shapes to account for bias node
w = np.random.random((39, 39)) * 2 * ep - ep
w2 = np.random.random((40, 39))* 2 * ep - ep
w3 = np.random.random((40, 1)) * 2 * ep - ep
ep = 0.12
w = np.random.random((39, 39)) * 2 * ep - ep
w2 = np.random.random((40, 39))* 2 * ep - ep
w3 = np.random.random((40, 1)) * 2 * ep - ep
def addBias(mat):
return np.hstack((np.ones((mat.shape[0], 1)), mat))
step = -.1
for j in range(200):
# Forward prop
a2 = 1/(1 + np.exp(- addBias(x).dot(w)))
a3 = 1/(1 + np.exp(- addBias(a2).dot(w2)))
a4 = 1/(1 + np.exp(- addBias(a3).dot(w3)))
# Back prop
a4delta = (y - a4)
# need to remove bias nodes here
a3delta = a4delta.dot(w3[1:,:].T) * (a3 * (1 - a3))
a2delta = a3delta.dot(w2[1:,:].T) * (a2 * (1 - a2))
# Gradient Descent
# Multiply gradient by step then subtract
w3 -= addBias(a3).T.dot(a4delta) * step
w2 -= addBias(a2).T.dot(a3delta) * step
w -= addBias(x).T.dot(a2delta) * step
print(np.rint(a4))