求幂函数Haskell

Exponentiation function Haskell

如何使用Haskell求教堂数字的幂函数?

我正在尝试应用规则,即 λxy.yx,但有些地方不正常。

exponentiation :: (Num a) => Func a
exponentiation x y = y x

教会数字算术往往涉及相当奇怪的类型,因此它在 Haskell 中不如在无类型语言中那么优雅。原则上,教堂数字是一个接受 any endomorphism 并给出相同类型的另一个自同态的函数,即

five :: (a -> a) -> a -> a

适用于任何类型 a,即它确实意味着

{-# LANGUAGE ExplicitForall, UnicodeSyntax #-}
five :: ∀ a . (a -> a) -> a -> a

当你用这些数字做有趣的算术时,技巧是计算的各个组成部分实际上可能处理不同类型的自同态,包括本身是高阶函数的自同态。跟踪所有这些变得非常棘手。

因此,在 Haskell 中玩弄 Church 算术最不痛苦的方法是将所有多态性包装成 自然数的单一类型 (其实现恰好是教会编码):

{-# LANGUAGE RankNTypes, UnicodeSyntax #-}
newtype Nat = Nat {getChurchNum :: ∀ a . (a -> a) -> a -> a}

然后你可以给所有的基本操作明确的类型签名,只是你总是需要把对应数字的术语放在 Nat 包装器中,以隐藏多态性:

zero :: Nat
zero = Nat (\f x -> x)

suc :: Nat -> Nat
suc = \(Nat n) -> Nat (\f x -> n f (f x))

...或者,我更愿意这样写,

instance Enum Nat where
  succ (Nat n) = Nat (\f -> n f . f)

instance Num Nat where
  fromInteger 0 = Nat (const id)
  fromInteger n = succ . fromInteger $ n-1
  Nat a + Nat b = Nat (\f -> a f . b f)
  Nat a * Nat b = Nat (a . b)

instance Show Nat where
  show (Nat n) = show (n (+1) 0 :: Int)

快速测试:

GHCi> [0, 1, 2, 4, 8, 3+4, 3*4 :: Nat]
[0,1,2,4,8,7,12]

现在有了这些类型,你也可以直接实现求幂:

pow :: Nat -> Nat -> Nat
pow (Nat n) (Nat m) = Nat (m n)

它按预期工作:

GHCi> [pow a b :: Nat | a<-[0,1,2,3], b<-[0,1,2,3]]
[1,0,0,0,1,1,1,1,1,2,4,8,1,3,9,27]

这是另一个使用 WinHugs 的例子:

type Church a = (a -> a) -> a -> a

zero :: Church a
zero = \s z -> z

one :: Church a
one = \s z -> s z

two :: Church a
two = \s z -> s (s z)

three :: Church a
three = \s z -> s (s (s z))

four :: Church a
four = \s z -> s (s (s (s z)))

succ :: Church a -> Church a
succ n f = f . n f

add :: Church a -> Church a -> Church a
add x y = \s z -> x s (y s z)

mult :: Church a -> Church a -> Church a
mult x y = x.y

exp :: Church a -> (Church a -> Church a) -> Church a
exp x y = y x

正在测试操作 addmultexp(使用 s=(+1)z=0):

Main> add two three (+1) 0
5
Main> mult four three (+1) 0
12
Main> exp two three (+1) 0
8

正在测试操作 addmultexp(使用 s=('|':)z=""):

Main> add two three ('|':) ""
"|||||" --5 sticks
Main> mult four three ('|':) ""
"||||||||||||" --12 sticks
Main> exp two three ('|':) ""
"||||||||" --8 sticks

exp four two (4^2 = 16) 写成:

Main> two four (+1) 0
16

工作正常!