使用 POSIX 信号量的可重用屏障实现

Reusable barrier implementation using POSIX semaphores

需要一个创建 5 个 pthread 的解决方案。每个 pthread 执行一个函数,该函数涉及循环迭代 10 次。在循环的每次迭代中,线程将 int 从 0 递增到 0.9*MAX_INT,然后打印迭代编号。确保 5 个线程中的每一个都完成循环的第 i 次迭代,然后才能开始第 (i+1) 次迭代(即所有线程 synchronize/rendezvous 接近每次迭代的末尾)。我需要使用使用 POSIX 信号量实现的两相屏障来强制执行同步约束

我写了下面的代码对吗?

#include <stdio.h>

#include <stdlib.h>

#include <pthread.h>

int thread_count;

void* MyThread(void* rank);

int main()

{

  long thread;

   pthread_t* thread_handles;

   thread_count = 5;

   thread_handles = malloc (thread_count*sizeof(pthread_t));

   for (thread = 0; thread < thread_count; thread++)

       pthread_create(&thread_handles[thread],NULL,MyThread,(void*) thread);

   for (thread = 0; thread < thread_count; thread++)

       pthread_join(thread_handles[thread], NULL);

   free(thread_handles);

   return 0;

}

void* Hello(void* rank)

{

    long my_rank = (long) rank;

    int a,i;

    a=0;

    for(i=0;i<10;i++)

    {

          int n = 5;
          int count = 0;

          pthread_mutex_t mutex = Semaphore(1)

          barrier = Semaphore(0)

          a = a + 0.9*MAX_INT;

          printf("this is %d iteration\n",i);

          mutex.wait()

          count = count + 1

          mutex.signal()

          if count == n: barrier.signal() # unblock ONE thread

          barrier.wait()

          barrier.signal()

   }

}

编辑:

#define _GNU_SOURCE
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <pthread.h>
#include <time.h>
#include <semaphore.h>

typedef struct {
  int n;
  int count;
  sem_t mutex;
  sem_t turnstyle;
  sem_t turnstyle2;
} barrier_t;

void init_barrier(barrier_t *barrier, int n)
{
  barrier->n = n;
  barrier->count = 0;
  sem_init(&barrier->mutex, 0, 1);
  sem_init(&barrier->turnstyle, 0, 0);
  sem_init(&barrier->turnstyle2, 0, 0);
}

void phase1_barrier(barrier_t *barrier)
{
  sem_wait(&barrier->mutex);
  if (++barrier->count == barrier->n) {
    int i;
    for (i = 0; i < barrier->n; i++) {
      sem_post(&barrier->turnstyle);
    }
  }
  sem_post(&barrier->mutex);
  sem_wait(&barrier->turnstyle);
}

void phase2_barrier(barrier_t *barrier)
{
  sem_wait(&barrier->mutex);
  if (--barrier->count == 0) {
    int i;
    for (i = 0; i < barrier->n; i++) {
      sem_post(&barrier->turnstyle2);
    }
  }
  sem_post(&barrier->mutex);
  sem_wait(&barrier->turnstyle2);
}

void wait_barrier(barrier_t *barrier)
{
  phase1_barrier(barrier);
  phase2_barrier(barrier);
}

#define NUM_THREADS 5

void *myThread(void *);

int main(int argc, char **argv)
{
  pthread_t threads[NUM_THREADS];
  barrier_t barrier;
  int i;

  init_barrier(&barrier, NUM_THREADS);

  for (i = 0; i < NUM_THREADS; i++) {
    pthread_create(&threads[i], NULL, myThread, &barrier);
  }

  for (i = 0; i < NUM_THREADS, i++) {
    pthread_join(threads[i], NULL);
  }

  return 0;
}

void *myThread(void *arg)
{
      barrier_t *barrier = arg;
      int i,a;

        for(i=0;i<10;i++)

            {
                a = a + 0.9*MAX_INT;

                printf("this is %d iteration\n",i);
            }
  return NULL;
}

好的,如果我们检查第 3.7.7 节 "The Little Book of Semaphores" 中的 Barrier 对象,我们会发现我们需要一个 mutex 和 2 个名为 turnstile 的信号量和 turnstile2(互斥锁可以是初始化为 1 的信号量)。

由于我们必须使用 POSIX 信号量、pthreads 和 INT_MAX,因此我们首先包含必要的头文件:

#include <pthread.h>
#include <semaphore.h>
#include <limits.h>

这本书使 Barrier 成为一个对象;然而,在 C 中,我们并没有真正的对象,但我们可以创建一个 struct 并带有一些函数来对其进行操作:

typedef struct {
  int n;
  int count;
  sem_t mutex;
  sem_t turnstile;
  sem_t turnstile2;
} barrier_t;

我们可以创建一个函数来初始化屏障:

void init_barrier(barrier_t *barrier, int n)
{
  barrier->n = n;
  barrier->count = 0;
  sem_init(&barrier->mutex, 0, 1);
  sem_init(&barrier->turnstile, 0, 0);
  sem_init(&barrier->turnstile2, 0, 0);
}

并实现phase1函数,如书中所述:

void phase1_barrier(barrier_t *barrier)
{
  sem_wait(&barrier->mutex);
  if (++barrier->count == barrier->n) {
    int i;
    for (i = 0; i < barrier->n; i++) {
      sem_post(&barrier->turnstile);
    }
  }
  sem_post(&barrier->mutex);
  sem_wait(&barrier->turnstile);
}

请注意,sem_post 函数仅执行一次 post,因此需要循环 post turnstile n 次。

phase2函数也同样直接跟随:

void phase2_barrier(barrier_t *barrier)
{
  sem_wait(&barrier->mutex);
  if (--barrier->count == 0) {
    int i;
    for (i = 0; i < barrier->n; i++) {
      sem_post(&barrier->turnstile2);
    }
  }
  sem_post(&barrier->mutex);
  sem_wait(&barrier->turnstile2);
}

终于可以实现wait功能了:

void wait_barrier(barrier_t *barrier)
{
  phase1_barrier(barrier);
  phase2_barrier(barrier);
}

现在,在您的 main 函数中,您可以分配和初始化屏障并将其传递给您生成的线程:

#define NUM_THREADS 5

void *myThread(void *);

int main(int argc, char **argv)
{
  pthread_t threads[NUM_THREADS];
  barrier_t barrier;
  int i;

  init_barrier(&barrier, NUM_THREADS);

  for (i = 0; i < NUM_THREADS; i++) {
    pthread_create(&threads[i], NULL, myThread, &barrier);
  }

  for (i = 0; i < NUM_THREADS, i++) {
    pthread_join(threads[i], NULL);
  }

  return 0;
}

最后,实现线程:

void *myThread(void *arg)
{
  barrier_t *barrier = arg;
  int i;
  int a;

  for (i = 0; i < 10; i++) {
    for (a = 0; a < 0.9*INT_MAX; a++);
    printf("this is %d iteration\n", i);
    wait_barrier(barrier);
  }

  return NULL;
}