加快 Django 表单以将大型 (500k obs) CSV 文件上传到 MySQL 数据库

SPEED UP Django Form to Upload large (500k obs) CSV file to MySQL DB

Django table 大约有 430,000 个 obs 和 230mb 文件;\ 并且来自下面详细概述的平面 CSV 文件\ MODELS.PY。我考虑过为 CSV Reader 使用块,但我认为处理器\ 我有填充 MySQL table 的函数是我的挂断;需要20小时+\ 我怎样才能加快速度?

class MastTable(models.Model):
    evidence = models.ForeignKey(Evidence, blank=False)
    var2 = models.CharField(max_length=10, blank=True, null=True)
    var3 = models.CharField(max_length=10, blank=True, null=True)
    var4 = models.CharField(max_length=10, blank=True, null=True)
    var5 = models.CharField(max_length=10, blank=True, null=True)
    var6 = models.DateTimeField(blank=True, null=True)
    var7 = models.DateTimeField(blank=True, null=True)
    var8 = models.DateTimeField(blank=True, null=True)
    var9 = models.DateTimeField(blank=True, null=True)
    var10 = models.DateTimeField(blank=True, null=True)
    var11 = models.DateTimeField(blank=True, null=True)
    var12 = models.DateTimeField(blank=True, null=True)
    var13 = models.DateTimeField(blank=True, null=True)
    var14 = models.CharField(max_length=500, blank=True, null=True)
    var15 = models.CharField(max_length=500, blank=True, null=True)
    var16 = models.CharField(max_length=50, blank=True, null=True)
    var17 = models.CharField(max_length=500, blank=True, null=True)
    var18 = models.CharField(max_length=500, blank=True, null=True)
    var19 = models.CharField(max_length=500, blank=True, null=True)
    var20 = models.CharField(max_length=500, blank=True, null=True)
    var21 = models.CharField(max_length=500, blank=True, null=True)
    var22 = models.CharField(max_length=500, blank=True, null=True)
    var23 = models.DateTimeField(blank=True, null=True)
    var24 = models.DateTimeField(blank=True, null=True)
    var25 = models.DateTimeField(blank=True, null=True)
    var26 = models.DateTimeField(blank=True, null=True)

此辅助函数将为 CSV 创建一个 reader 对象\ 并在 MySQL 上传

之前解码文件中的任何时髦编解码器
def unicode_csv_reader(utf8_data, dialect=csv.excel, **kwargs):
    csv_reader = csv.reader(utf8_data, dialect=dialect, **kwargs)
    for row in csv_reader:
        yield [unicode(cell, 'ISO-8859-1') for cell in row]

UTILS.PY 文件中的一个函数然后将访问一个数据库 table(名为 'extract_properties')\ 包含文件头以标识要转到的处理器函数\ 处理器功能如下所示

def processor_table(extract_properties):  #Process the table into MySQL
    evidence_obj, created = Evidence.objects.get_or_create(case=case_obj, 
    evidence_number=extract_properties['evidence_number']) #This retrieves the Primary Key
    reader = unicode_csv_reader(extract_properties['uploaded_file'],dialect='pipes') #CSVfunction  
    for idx, row in enumerate(reader):
        if idx <= (extract_properties['header_row_num'])+3: #Header is not always 1st row of file
            pass
        else:
            try:
                obj, created = MastTable.objects.create( #I was originally using 'get_or_create'
                    evidence=evidence_obj,
                    var2=row[0],
                    var3=row[1],
                    var4=row[2],
                    var5=row[3],
                    var6=date_convert(row[4],row[5]), #funct using 'dateutil.parser.parse'
                    var7=date_convert(row[6],row[7]),
                    var8=date_convert(row[8],row[9]),
                    var9=date_convert(row[10],row[11]),
                    var10=date_convert(row[12],row[13]),
                    var11=date_convert(row[14],row[15]),
                    var12=date_convert(row[16],row[17]),
                    var13=date_convert(row[18],row[19]),
                    var14=row[20],
                    var15=row[21],
                    var16=row[22],
                    var17=row[23],
                    var18=row[24],
                    var19=row[25],
                    var20=row[26],
                    var21=row[27],
                    var22=row[28],
                    var23=date_convert(row[29],row[30]),
                    var24=date_convert(row[31],row[32]),
                    var25=date_convert(row[33],row[34]),
                    var26=date_convert(row[35],row[36]),)
            except Exception as e:  #This logs any exceptions to a custom DB table
                print "Error",e
                print "row",row
                print "idx:",idx
                SystemExceptionLog.objects.get_or_create(indexrow=idx, errormsg=e.args[0],     
                timestamp=datetime.datetime.now(),   
                uploadedfile=extract_properties['uploaded_file'])
                continue
    return True 

最后 VIEWS.PY 下面的表单接受文件并调用上面的处理器来填充数据库 检查有效的表单数据,如果有效

,则将任何文件传递给文件处理程序
def upload_file(request):
        if request.method == 'POST':
        form = UploadFileForm(request.POST, request.FILES)
        if form.is_valid():
            for _file in request.FILES.getlist('file'): 
                extract_properties = get_file_properties(_file) 
                if extract_properties:
                    for property in extract_properties: #File is found and processor kicked off 
                        print "starting parser"
                        try:
                            property['evidence_number'] = request.POST.get('evidence_number')
                            result = process_extract(property)
                            if result is None:
                                print 'Unable to get determine extract properties!'
                        except Exception as e:
                            print "!!!!!!!"
                            print "Error, could not upload", e
                            pass
                 else:
                    print 'Unable to identify file uploaded!' 
            return HttpResponseRedirect('')
        print form
    else:
        form = UploadFileForm()
    return render_to_response('nettop/upload_file.html',  # The web frontend Page for Upload
                              {'form': form},
                              context_instance=RequestContext(request))

Django中最基本有效的优化就是减少对数据库的查询次数。这对于 100 个查询是正确的,对于 500.000 个查询也是如此。

而不是使用 MastTable.objects.create(),您应该构建一个未保存模型实例的列表,并使用 MastTable.objects.bulk_create(list_of_models) 在尽可能少的数据库往返中创建它们。这应该会大大加快它的速度。

如果您使用的是 MySQL,您可以增加 max_allowed_packet 设置以允许更大的批次。它的默认值 1MB 非常低。 PostGRESQL 没有硬编码限制。如果您仍然 运行 遇到性能问题,可以切换到 raw SQL statements。创建 500.000 python 个对象可能有点开销。在我最近的一项测试中,使用 connection.cursor 执行完全相同的查询大约快 20%。

将文件的实际处理留给后台进程使用例如Celery,或使用 StreamingHttpResponse 在此过程中提供反馈。

此 csv 文件是否包含无效行?我的意思是你真的需要这条线吗?

except Exception as e:  #This logs any exceptions to a custom DB table

如果没有抛出此类错误,那么您应该使用 bulk_create() 而不是 create().

另外我建议在单个事务中执行导入。这是一个 巨大 速度助推器:

from django.db import transaction

with transaction.atomic():
    processor_table(extract_properties)