简单类型λ演算中闭项自由变量的归纳假设
Induction hypothesis for free variables of closed term in the simply typed lambda calculus
我试图在 Coq 中形式化简单类型的 lambda 演算,但在陈述引理时遇到问题,即空上下文中类型良好的表达式的自由变量集为空。
这里是五月形式化的相关部分。
Require Import Coq.Arith.Arith.
Require Import Coq.MSets.MSets.
Require Import Coq.FSets.FMaps.
Inductive type : Set :=
| tunit : type
| tfun : type -> type -> type.
Module Var := Nat.
Definition var : Set := Var.t.
Module VarSet := MSetAVL.Make Var.
Module VarSetFacts := MSetFacts.Facts VarSet.
Module VarSetProps := MSetProperties.Properties VarSet.
Module Context := FMapWeakList.Make Var.
Module ContextFacts := FMapFacts.Facts Context.
Module ContextProps := FMapFacts.Properties Context.
Definition context := Context.t type.
Definition context_empty : context := Context.empty type.
Inductive expr : Set :=
| eunit : expr
| evar : var -> expr
| eabs : var -> type -> expr -> expr
| eapp : expr -> expr -> expr.
Fixpoint free_vars (e : expr) : VarSet.t :=
match e with
| eunit => VarSet.empty
| evar y => VarSet.singleton y
| eabs y _ e => VarSet.remove y (free_vars e)
| eapp e1 e2 => VarSet.union (free_vars e1) (free_vars e2)
end.
Inductive has_type : context -> expr -> type -> Prop :=
| has_type_unit : forall c,
has_type c eunit tunit
| has_type_var : forall c x t,
Context.find x c = Some t ->
has_type c (evar x) t
| has_type_abs : forall c x t1 t2 e,
has_type (Context.add x t1 c) e t2 ->
has_type c (eabs x t1 e) (tfun t1 t2)
| has_type_app : forall c e1 e2 t1 t2,
has_type c e1 (tfun t1 t2) ->
has_type c e2 t1 ->
has_type c (eapp e1 e2) t2.
Check has_type_ind.
Lemma has_type_empty_context_free_vars : forall e t,
has_type context_empty e t ->
VarSet.Empty (free_vars e).
Proof.
intros e t H.
remember context_empty as c.
induction H; subst.
- apply VarSet.empty_spec.
- rewrite ContextFacts.empty_o in H.
congruence.
- simpl.
admit. (* Wrong induction hypothesis *)
- simpl.
rewrite VarSetProps.empty_union_1; auto.
Admitted.
问题好像是我的归纳假设是错误的。它只是说
Context.add x t1 context_empty = context_empty ->
VarSet.Empty (free_vars e)
这完全正确,因为假设是错误的。我尝试对表达式进行归纳并重新表述定理以获得正确的归纳假设,但无法弄清楚。
定义和证明这个属性的正确方法是什么?
解决方案
跟随 Yves 的 并感谢 ejgallego 的评论,我首先证明了一个广义引理。
Lemma has_type_free_vars_in_context : forall c e t,
has_type c e t ->
VarSet.For_all (fun x => Context.mem x c = true) (free_vars e).
Proof.
intros c e t H.
induction H; simpl.
- intros x contra.
apply VarSetFacts.empty_iff in contra.
inversion contra.
- intros y H2.
apply Context.mem_1.
apply ContextFacts.in_find_iff.
apply VarSet.singleton_spec in H2.
subst.
rewrite H.
discriminate.
- intros y H2.
unfold VarSet.For_all in *.
apply VarSet.remove_spec in H2 as [H2 H3].
specialize (IHhas_type y H2).
rewrite ContextFacts.add_neq_b in IHhas_type; auto.
- intros x H2.
apply VarSet.union_spec in H2 as [H2 | H2]; auto.
Qed.
并用来证明我的定理。
Lemma has_type_empty_context_free_vars : forall e t,
has_type context_empty e t ->
VarSet.Empty (free_vars e).
Proof.
intros e t H.
apply has_type_free_vars_in_context in H.
induction (free_vars e) using VarSetProps.set_induction.
- assumption.
- rename t0_1 into s.
rename t0_2 into s'.
apply VarSetProps.Add_Equal in H1.
unfold VarSet.For_all in *.
specialize (H x).
rewrite H1 in H.
specialize (H (VarSetFacts.add_1 s eq_refl)).
Search (Context.empty).
rewrite ContextFacts.empty_a in H.
discriminate.
Qed.
现在可以了。非常感谢。有没有办法重构这个解决方案以获得更多的自动化、更好的可读性、更好的维护等?
你对语句"has_type ..."的假设进行归纳是正确的,但你可能需要加载归纳。换句话说,您需要证明一个更强的陈述,使环境成为一个变量,并表示 e
中的自由变量集必须在您的上下文中具有类型的变量内部。
我试图在 Coq 中形式化简单类型的 lambda 演算,但在陈述引理时遇到问题,即空上下文中类型良好的表达式的自由变量集为空。
这里是五月形式化的相关部分。
Require Import Coq.Arith.Arith.
Require Import Coq.MSets.MSets.
Require Import Coq.FSets.FMaps.
Inductive type : Set :=
| tunit : type
| tfun : type -> type -> type.
Module Var := Nat.
Definition var : Set := Var.t.
Module VarSet := MSetAVL.Make Var.
Module VarSetFacts := MSetFacts.Facts VarSet.
Module VarSetProps := MSetProperties.Properties VarSet.
Module Context := FMapWeakList.Make Var.
Module ContextFacts := FMapFacts.Facts Context.
Module ContextProps := FMapFacts.Properties Context.
Definition context := Context.t type.
Definition context_empty : context := Context.empty type.
Inductive expr : Set :=
| eunit : expr
| evar : var -> expr
| eabs : var -> type -> expr -> expr
| eapp : expr -> expr -> expr.
Fixpoint free_vars (e : expr) : VarSet.t :=
match e with
| eunit => VarSet.empty
| evar y => VarSet.singleton y
| eabs y _ e => VarSet.remove y (free_vars e)
| eapp e1 e2 => VarSet.union (free_vars e1) (free_vars e2)
end.
Inductive has_type : context -> expr -> type -> Prop :=
| has_type_unit : forall c,
has_type c eunit tunit
| has_type_var : forall c x t,
Context.find x c = Some t ->
has_type c (evar x) t
| has_type_abs : forall c x t1 t2 e,
has_type (Context.add x t1 c) e t2 ->
has_type c (eabs x t1 e) (tfun t1 t2)
| has_type_app : forall c e1 e2 t1 t2,
has_type c e1 (tfun t1 t2) ->
has_type c e2 t1 ->
has_type c (eapp e1 e2) t2.
Check has_type_ind.
Lemma has_type_empty_context_free_vars : forall e t,
has_type context_empty e t ->
VarSet.Empty (free_vars e).
Proof.
intros e t H.
remember context_empty as c.
induction H; subst.
- apply VarSet.empty_spec.
- rewrite ContextFacts.empty_o in H.
congruence.
- simpl.
admit. (* Wrong induction hypothesis *)
- simpl.
rewrite VarSetProps.empty_union_1; auto.
Admitted.
问题好像是我的归纳假设是错误的。它只是说
Context.add x t1 context_empty = context_empty ->
VarSet.Empty (free_vars e)
这完全正确,因为假设是错误的。我尝试对表达式进行归纳并重新表述定理以获得正确的归纳假设,但无法弄清楚。
定义和证明这个属性的正确方法是什么?
解决方案
跟随 Yves 的
Lemma has_type_free_vars_in_context : forall c e t,
has_type c e t ->
VarSet.For_all (fun x => Context.mem x c = true) (free_vars e).
Proof.
intros c e t H.
induction H; simpl.
- intros x contra.
apply VarSetFacts.empty_iff in contra.
inversion contra.
- intros y H2.
apply Context.mem_1.
apply ContextFacts.in_find_iff.
apply VarSet.singleton_spec in H2.
subst.
rewrite H.
discriminate.
- intros y H2.
unfold VarSet.For_all in *.
apply VarSet.remove_spec in H2 as [H2 H3].
specialize (IHhas_type y H2).
rewrite ContextFacts.add_neq_b in IHhas_type; auto.
- intros x H2.
apply VarSet.union_spec in H2 as [H2 | H2]; auto.
Qed.
并用来证明我的定理。
Lemma has_type_empty_context_free_vars : forall e t,
has_type context_empty e t ->
VarSet.Empty (free_vars e).
Proof.
intros e t H.
apply has_type_free_vars_in_context in H.
induction (free_vars e) using VarSetProps.set_induction.
- assumption.
- rename t0_1 into s.
rename t0_2 into s'.
apply VarSetProps.Add_Equal in H1.
unfold VarSet.For_all in *.
specialize (H x).
rewrite H1 in H.
specialize (H (VarSetFacts.add_1 s eq_refl)).
Search (Context.empty).
rewrite ContextFacts.empty_a in H.
discriminate.
Qed.
现在可以了。非常感谢。有没有办法重构这个解决方案以获得更多的自动化、更好的可读性、更好的维护等?
你对语句"has_type ..."的假设进行归纳是正确的,但你可能需要加载归纳。换句话说,您需要证明一个更强的陈述,使环境成为一个变量,并表示 e
中的自由变量集必须在您的上下文中具有类型的变量内部。