如何为 sklearn svm 塑造训练和测试数据
How to shape train and test data for sklearn svm
我正在使用 pandas 库来提取数据并使用它来提供 svc 分类器,如下所示:
from sklearn.svm import SVC
import pandas as pd
train = pd.read_csv('train.csv')
X_train = train['FunctionalWordPercent']
Y_train = train['openness']
test = pd.read_csv('test.csv')
X_test = test['FunctionalWordPercent']
Y_test = test['openness']
clf = SVC()
clf.fit(X_train, Y_train)
SVC(kernel="linear", c=1.0)
print(clf.score(X_test,Y_test))
但我不断收到以下错误:
Reshape your data either using array.reshape(-1, 1) if your data has a single feature or array.reshape(1, -1) if it contains a single sample.
看起来您正在为 X 使用单列(特征)。要使此代码正常工作,您需要执行以下操作:
X_train = train['FunctionalWordPercent']
X_train = X_train.reshape(-1,1)
X_test = test['FunctionalWordPercent']
X_test = X_test.reshape(-1,1)
我正在使用 pandas 库来提取数据并使用它来提供 svc 分类器,如下所示:
from sklearn.svm import SVC
import pandas as pd
train = pd.read_csv('train.csv')
X_train = train['FunctionalWordPercent']
Y_train = train['openness']
test = pd.read_csv('test.csv')
X_test = test['FunctionalWordPercent']
Y_test = test['openness']
clf = SVC()
clf.fit(X_train, Y_train)
SVC(kernel="linear", c=1.0)
print(clf.score(X_test,Y_test))
但我不断收到以下错误:
Reshape your data either using array.reshape(-1, 1) if your data has a single feature or array.reshape(1, -1) if it contains a single sample.
看起来您正在为 X 使用单列(特征)。要使此代码正常工作,您需要执行以下操作:
X_train = train['FunctionalWordPercent']
X_train = X_train.reshape(-1,1)
X_test = test['FunctionalWordPercent']
X_test = X_test.reshape(-1,1)