Keras 中 LSTM 权重的顺序
Order of LSTM weights in Keras
我正在尝试对已学习的 LSTM 模型进行简单的评估(即前向传播),但我无法弄清楚 f_t、i_t、o_t 的顺序c_in 从 z 中提取。据我了解,它们是批量计算的。
下面是使用 Keras 得到的模型架构:
我的输入顺序是:
input_seq = np.array([[[0.725323664],
[0.7671179],
[0.805884672]]])
输出应该是:
[ 0.83467698]
使用 Keras,我获得了第一个 LSTM 层的以下参数:
lstm_1_kernel_0 = np.array([[-0.40927699, -0.53539848, 0.40065038, -0.07722378, 0.30405849, 0.54959822, -0.23097005, 0.4720422, 0.05197877, -0.52746099, -0.5856396, -0.43691438]])
lstm_1_recurrent_kernel_0 = np.array([[-0.25504839, -0.0823682, 0.11609183, 0.41123426, 0.03409858, -0.0647027, -0.59183347, -0.15359771, 0.21647622, 0.24863823, 0.46169096, -0.21100986],
[0.29160395, 0.46513283, 0.33996364, -0.31195125, -0.24458826, -0.09762905, 0.16202784, -0.01602131, 0.34460208, 0.39724654, 0.31806156, 0.1102117],
[-0.15919448, -0.33053166, -0.22857222, -0.04912394, -0.21862955, 0.55346996, 0.38505834, 0.18110731, 0.270677, -0.02759281, 0.42814475, -0.13496138]])
lstm_1_bias_0 = np.array([0., 0., 0., 1., 1., 1., 0., 0., 0., 0., 0., 0.])
# LSTM 1
z_1_lstm_1 = np.dot(x_1_lstm_1, lstm_1_kernel_0) + np.dot(h_0_lstm_1, lstm_1_recurrent_kernel_0) + lstm_1_bias_0
i_1_lstm_1 = z_1_lstm_1[0, 0:3]
f_1_lstm_1 = z_1_lstm_1[0, 3:6]
input_to_c_1_lstm_1 = z_1_lstm_1[0, 6:9]
o_1_lstm_1 = z_1_lstm_1[0, 9:12]
所以问题是 i_1_lstm_1
、f_1_lstm_1
、input_to_c_1_lstm_1
、o_1_lstm_1
的正确顺序是什么?
它是 (i, f, c, o)。在 recurrent.py 中,在 LSTMCell
中,权重由以下内容构成:
self.kernel_i = self.kernel[:, :self.units]
self.kernel_f = self.kernel[:, self.units: self.units * 2]
self.kernel_c = self.kernel[:, self.units * 2: self.units * 3]
self.kernel_o = self.kernel[:, self.units * 3:]
self.recurrent_kernel_i = self.recurrent_kernel[:, :self.units]
self.recurrent_kernel_f = self.recurrent_kernel[:, self.units: self.units * 2]
self.recurrent_kernel_c = self.recurrent_kernel[:, self.units * 2: self.units * 3]
self.recurrent_kernel_o = self.recurrent_kernel[:, self.units * 3:]
if self.use_bias:
self.bias_i = self.bias[:self.units]
self.bias_f = self.bias[self.units: self.units * 2]
self.bias_c = self.bias[self.units * 2: self.units * 3]
self.bias_o = self.bias[self.units * 3:]
我正在尝试对已学习的 LSTM 模型进行简单的评估(即前向传播),但我无法弄清楚 f_t、i_t、o_t 的顺序c_in 从 z 中提取。据我了解,它们是批量计算的。
下面是使用 Keras 得到的模型架构:
我的输入顺序是:
input_seq = np.array([[[0.725323664],
[0.7671179],
[0.805884672]]])
输出应该是:
[ 0.83467698]
使用 Keras,我获得了第一个 LSTM 层的以下参数:
lstm_1_kernel_0 = np.array([[-0.40927699, -0.53539848, 0.40065038, -0.07722378, 0.30405849, 0.54959822, -0.23097005, 0.4720422, 0.05197877, -0.52746099, -0.5856396, -0.43691438]])
lstm_1_recurrent_kernel_0 = np.array([[-0.25504839, -0.0823682, 0.11609183, 0.41123426, 0.03409858, -0.0647027, -0.59183347, -0.15359771, 0.21647622, 0.24863823, 0.46169096, -0.21100986],
[0.29160395, 0.46513283, 0.33996364, -0.31195125, -0.24458826, -0.09762905, 0.16202784, -0.01602131, 0.34460208, 0.39724654, 0.31806156, 0.1102117],
[-0.15919448, -0.33053166, -0.22857222, -0.04912394, -0.21862955, 0.55346996, 0.38505834, 0.18110731, 0.270677, -0.02759281, 0.42814475, -0.13496138]])
lstm_1_bias_0 = np.array([0., 0., 0., 1., 1., 1., 0., 0., 0., 0., 0., 0.])
# LSTM 1
z_1_lstm_1 = np.dot(x_1_lstm_1, lstm_1_kernel_0) + np.dot(h_0_lstm_1, lstm_1_recurrent_kernel_0) + lstm_1_bias_0
i_1_lstm_1 = z_1_lstm_1[0, 0:3]
f_1_lstm_1 = z_1_lstm_1[0, 3:6]
input_to_c_1_lstm_1 = z_1_lstm_1[0, 6:9]
o_1_lstm_1 = z_1_lstm_1[0, 9:12]
所以问题是 i_1_lstm_1
、f_1_lstm_1
、input_to_c_1_lstm_1
、o_1_lstm_1
的正确顺序是什么?
它是 (i, f, c, o)。在 recurrent.py 中,在 LSTMCell
中,权重由以下内容构成:
self.kernel_i = self.kernel[:, :self.units]
self.kernel_f = self.kernel[:, self.units: self.units * 2]
self.kernel_c = self.kernel[:, self.units * 2: self.units * 3]
self.kernel_o = self.kernel[:, self.units * 3:]
self.recurrent_kernel_i = self.recurrent_kernel[:, :self.units]
self.recurrent_kernel_f = self.recurrent_kernel[:, self.units: self.units * 2]
self.recurrent_kernel_c = self.recurrent_kernel[:, self.units * 2: self.units * 3]
self.recurrent_kernel_o = self.recurrent_kernel[:, self.units * 3:]
if self.use_bias:
self.bias_i = self.bias[:self.units]
self.bias_f = self.bias[self.units: self.units * 2]
self.bias_c = self.bias[self.units * 2: self.units * 3]
self.bias_o = self.bias[self.units * 3:]