Plotnine 条形图按变量排序
Plotnine bar plot order by variable
我对订购条形图有疑问。例如:
http://pythonplot.com/#bar-counts
(ggplot(mpg) +
aes(x='manufacturer') +
geom_bar(size=20) +
coord_flip() +
ggtitle('Number of Cars by Make')
)
如何按 "mpg" 订购?
感谢 has2k1:https://github.com/has2k1/plotnine/issues/94
如果 x 映射是有序的分类,则它是受尊重的。
from plydata import *
from plotnine import *
from plotnine.data import mpg
# count the manufacturer and sort by the count (see, plydata documentation
# or find out how to do the same thing using raw pandas)
m_categories = (
mpg
>> count('manufacturer', sort=True)
>> pull('manufacturer')
)
df = mpg.copy()
df['manufacturer'] = pd.Categorical(df['manufacturer'], categories=m_categories, ordered=True)
(ggplot(df) +
aes(x='manufacturer') +
geom_bar(size=20) +
coord_flip() +
ggtitle('Number of Cars by Make')
)
在 STHDA 我发现:
Change the order of items in the legend The function scale_x_discrete
can be used to change the order of items to “2”, “0.5”, “1” :
p + scale_x_discrete(limits=c("D2", "D0.5", "D1"))
我的目标是保留 df 的顺序,所以我做到了:
scale_x_discrete(limits=df[xColumn].tolist())
然后我意识到第一个栏项目在最后所以我切换到:
scale_x_discrete(limits=df[xColumn].tolist()[::-1])
我无法使用 reverse()
,因为它在适当的地方工作并且没有 return 列表,所以 limits
似乎没有看到效果。
我对订购条形图有疑问。例如:
http://pythonplot.com/#bar-counts
(ggplot(mpg) +
aes(x='manufacturer') +
geom_bar(size=20) +
coord_flip() +
ggtitle('Number of Cars by Make')
)
如何按 "mpg" 订购?
感谢 has2k1:https://github.com/has2k1/plotnine/issues/94
如果 x 映射是有序的分类,则它是受尊重的。
from plydata import *
from plotnine import *
from plotnine.data import mpg
# count the manufacturer and sort by the count (see, plydata documentation
# or find out how to do the same thing using raw pandas)
m_categories = (
mpg
>> count('manufacturer', sort=True)
>> pull('manufacturer')
)
df = mpg.copy()
df['manufacturer'] = pd.Categorical(df['manufacturer'], categories=m_categories, ordered=True)
(ggplot(df) +
aes(x='manufacturer') +
geom_bar(size=20) +
coord_flip() +
ggtitle('Number of Cars by Make')
)
在 STHDA 我发现:
Change the order of items in the legend The function scale_x_discrete can be used to change the order of items to “2”, “0.5”, “1” :
p + scale_x_discrete(limits=c("D2", "D0.5", "D1"))
我的目标是保留 df 的顺序,所以我做到了:
scale_x_discrete(limits=df[xColumn].tolist())
然后我意识到第一个栏项目在最后所以我切换到:
scale_x_discrete(limits=df[xColumn].tolist()[::-1])
我无法使用 reverse()
,因为它在适当的地方工作并且没有 return 列表,所以 limits
似乎没有看到效果。