如何限制 kotlin 协程的最大并发数

how to cap kotlin coroutines maximum concurrency

我有一个序列(来自 File.walkTopDown),我需要对每个序列进行 运行 长 运行ning 操作。我想使用 Kotlin 最佳实践/协程,但我要么得不到并行性,要么并行性太高并遇到 "too many open files" IO 错误。

File("/Users/me/Pictures/").walkTopDown()
    .onFail { file, ex -> println("ERROR: $file caused $ex") }
    .filter { ... only big images... }
    .map { file ->
        async { // I *think* I want async and not "launch"...
            ImageProcessor.fromFile(file)
        }
    }

这似乎无法 运行 并行,而且我的多核 CPU 从未超过 1 CPU 的价值。有没有办法使用协程来完成 运行 "NumberOfCores parallel operations" 的延迟作业?

我查看了 ,它首先创建所有作业然后加入它们,但这意味着在繁重的处理连接步骤之前完全完成 Sequence/file 树遍历,这似乎......不确定!将其拆分为收集和处理步骤意味着收集可以 运行 远远领先于处理。

val jobs = ... the Sequence above...
    .toSet()
println("Found ${jobs.size}")
jobs.forEach { it.await() }

您的第一个代码段的问题在于它根本 运行 - 请记住,Sequence 是惰性的,您必须使用终端操作,例如 toSet()forEach()。此外,您需要通过构建 newFixedThreadPoolContext 上下文并在 async 中使用它来限制可用于该任务的线程数:

val pictureContext = newFixedThreadPoolContext(nThreads = 10, name = "reading pictures in parallel")

File("/Users/me/Pictures/").walkTopDown()
    .onFail { file, ex -> println("ERROR: $file caused $ex") }
    .filter { ... only big images... }
    .map { file ->
        async(pictureContext) {
            ImageProcessor.fromFile(file)
        }
    }
    .toList()
    .forEach { it.await() }

编辑: 您必须使用终端操作员 (toList) befor 等待结果

我通过频道获得了它。但也许我对你的方式是多余的?

val pipe = ArrayChannel<Deferred<ImageFile>>(20)
launch {
    while (!(pipe.isEmpty && pipe.isClosedForSend)) {
        imageFiles.add(pipe.receive().await())
    }
    println("pipe closed")
}
File("/Users/me/").walkTopDown()
        .onFail { file, ex -> println("ERROR: $file caused $ex") }
        .forEach { pipe.send(async { ImageFile.fromFile(it) }) }
pipe.close()

这将限制协程对工人的限制。我建议观看 https://www.youtube.com/watch?v=3WGM-_MnPQA

package com.example.workers

import kotlinx.coroutines.*
import kotlinx.coroutines.channels.ReceiveChannel
import kotlinx.coroutines.channels.produce
import kotlin.system.measureTimeMillis

class ChannellibgradleApplication

fun main(args: Array<String>) {
    var myList = mutableListOf<Int>(3000,1200,1400,3000,1200,1400,3000)
    runBlocking {
        var myChannel = produce(CoroutineName("MyInts")) {
            myList.forEach { send(it) }
        }

        println("Starting coroutineScope  ")
        var time = measureTimeMillis {
            coroutineScope {
                var workers = 2
                repeat(workers)
                {
                    launch(CoroutineName("Sleep 1")) { theHardWork(myChannel) }
                }
            }
        }
        println("Ending coroutineScope  $time ms")
    }
}

suspend fun theHardWork(channel : ReceiveChannel<Int>) 
{
    for(m in channel) {
        println("Starting Sleep $m")
        delay(m.toLong())
        println("Ending Sleep $m")
    }
}

这不会保留投影的顺序,但会以其他方式将吞吐量限制在最多 maxDegreeOfParallelism。按照您认为合适的方式扩展和延伸。

suspend fun <TInput, TOutput> (Collection<TInput>).inParallel(
        maxDegreeOfParallelism: Int,
        action: suspend CoroutineScope.(input: TInput) -> TOutput
): Iterable<TOutput> = coroutineScope {

    val list = this@inParallel

    if (list.isEmpty())
        return@coroutineScope listOf<TOutput>()

    val brake = Channel<Unit>(maxDegreeOfParallelism)
    val output = Channel<TOutput>()
    val counter = AtomicInteger(0)

    this.launch {

        repeat(maxDegreeOfParallelism) {
            brake.send(Unit)
        }

        for (input in list) {

            val task = this.async {
                action(input)
            }

            this.launch {
                val result = task.await()
                output.send(result)
                val completed = counter.incrementAndGet()
                if (completed == list.size) {
                    output.close()
                } else brake.send(Unit)
            }

            brake.receive()
        }
    }

    val results = mutableListOf<TOutput>()
    for (item in output) {
        results.add(item)
    }

    return@coroutineScope results
}

用法示例:

val output = listOf(1, 2, 3).inParallel(2) {
    it + 1
} // Note that output may not be in same order as list.

这不是特定于您的问题,但它确实回答了“如何限制 kotlin 协同程序的最大并发性”的问题。

编辑:从 kotlinx.coroutines 1.6.0 (https://github.com/Kotlin/kotlinx.coroutines/issues/2919) 开始,您可以使用 limitedParallelism,例如Dispatchers.IO.limitedParallelism(123).

老方案:一开始我想用newFixedThreadPoolContext,但是1)it's deprecated and 2) it would use threads and I don't think that's necessary or desirable (same with Executors.newFixedThreadPool().asCoroutineDispatcher()). This solution might have flaws I'm not aware of by using Semaphore,其实很简单:

import kotlinx.coroutines.async
import kotlinx.coroutines.awaitAll
import kotlinx.coroutines.coroutineScope
import kotlinx.coroutines.sync.Semaphore
import kotlinx.coroutines.sync.withPermit

/**
 * Maps the inputs using [transform] at most [maxConcurrency] at a time until all Jobs are done.
 */
suspend fun <TInput, TOutput> Iterable<TInput>.mapConcurrently(
    maxConcurrency: Int,
    transform: suspend (TInput) -> TOutput,
) = coroutineScope {
    val gate = Semaphore(maxConcurrency)
    this@mapConcurrently.map {
        async {
            gate.withPermit {
                transform(it)
            }
        }
    }.awaitAll()
}

测试(抱歉,它使用 Spek、hamcrest 和 kotlin 测试):

import kotlinx.coroutines.ExperimentalCoroutinesApi
import kotlinx.coroutines.delay
import kotlinx.coroutines.launch
import kotlinx.coroutines.runBlocking
import kotlinx.coroutines.test.TestCoroutineDispatcher
import org.hamcrest.MatcherAssert.assertThat
import org.hamcrest.Matchers.greaterThanOrEqualTo
import org.hamcrest.Matchers.lessThanOrEqualTo
import org.spekframework.spek2.Spek
import org.spekframework.spek2.style.specification.describe
import java.util.concurrent.atomic.AtomicInteger
import kotlin.test.assertEquals

@OptIn(ExperimentalCoroutinesApi::class)
object AsyncHelpersKtTest : Spek({
    val actionDelay: Long = 1_000 // arbitrary; obvious if non-test dispatcher is used on accident
    val testDispatcher = TestCoroutineDispatcher()

    afterEachTest {
        // Clean up the TestCoroutineDispatcher to make sure no other work is running.
        testDispatcher.cleanupTestCoroutines()
    }

    describe("mapConcurrently") {
        it("should run all inputs concurrently if maxConcurrency >= size") {
            val concurrentJobCounter = AtomicInteger(0)
            val inputs = IntRange(1, 2).toList()
            val maxConcurrency = inputs.size

            // https://github.com/Kotlin/kotlinx.coroutines/issues/1266 has useful info & examples
            runBlocking(testDispatcher) {
                print("start runBlocking $coroutineContext\n")

                // We have to run this async so that the code afterwards can advance the virtual clock
                val job = launch {
                    testDispatcher.pauseDispatcher {
                        val result = inputs.mapConcurrently(maxConcurrency) {
                            print("action $it $coroutineContext\n")

                            // Sanity check that we never run more in parallel than max
                            assertThat(concurrentJobCounter.addAndGet(1), lessThanOrEqualTo(maxConcurrency))

                            // Allow for virtual clock adjustment
                            delay(actionDelay)

                            // Sanity check that we never run more in parallel than max
                            assertThat(concurrentJobCounter.getAndAdd(-1), lessThanOrEqualTo(maxConcurrency))
                            print("action $it after delay $coroutineContext\n")

                            it
                        }

                        // Order is not guaranteed, thus a Set
                        assertEquals(inputs.toSet(), result.toSet())
                        print("end mapConcurrently $coroutineContext\n")
                    }
                }
                print("before advanceTime $coroutineContext\n")

                // Start the coroutines
                testDispatcher.advanceTimeBy(0)
                assertEquals(inputs.size, concurrentJobCounter.get(), "All jobs should have been started")

                testDispatcher.advanceTimeBy(actionDelay)
                print("after advanceTime $coroutineContext\n")
                assertEquals(0, concurrentJobCounter.get(), "All jobs should have finished")
                job.join()
            }
        }

        it("should run one at a time if maxConcurrency = 1") {
            val concurrentJobCounter = AtomicInteger(0)
            val inputs = IntRange(1, 2).toList()
            val maxConcurrency = 1

            runBlocking(testDispatcher) {
                val job = launch {
                    testDispatcher.pauseDispatcher {
                        inputs.mapConcurrently(maxConcurrency) {
                            assertThat(concurrentJobCounter.addAndGet(1), lessThanOrEqualTo(maxConcurrency))
                            delay(actionDelay)
                            assertThat(concurrentJobCounter.getAndAdd(-1), lessThanOrEqualTo(maxConcurrency))
                            it
                        }
                    }
                }

                testDispatcher.advanceTimeBy(0)
                assertEquals(1, concurrentJobCounter.get(), "Only one job should have started")

                val elapsedTime = testDispatcher.advanceUntilIdle()
                print("elapsedTime=$elapsedTime")
                assertThat(
                    "Virtual time should be at least as long as if all jobs ran sequentially",
                    elapsedTime,
                    greaterThanOrEqualTo(actionDelay * inputs.size)
                )
                job.join()
            }
        }

        it("should handle cancellation") {
            val jobCounter = AtomicInteger(0)
            val inputs = IntRange(1, 2).toList()
            val maxConcurrency = 1

            runBlocking(testDispatcher) {
                val job = launch {
                    testDispatcher.pauseDispatcher {
                        inputs.mapConcurrently(maxConcurrency) {
                            jobCounter.addAndGet(1)
                            delay(actionDelay)
                            it
                        }
                    }
                }

                testDispatcher.advanceTimeBy(0)
                assertEquals(1, jobCounter.get(), "Only one job should have started")

                job.cancel()
                testDispatcher.advanceUntilIdle()
                assertEquals(1, jobCounter.get(), "Only one job should have run")
                job.join()
            }
        }
    }
})

根据 https://play.kotlinlang.org/hands-on/Introduction%20to%20Coroutines%20and%20Channels/09_Testing,您可能还需要将测试的编译器参数调整为 运行:

compileTestKotlin {
    kotlinOptions {
        // Needed for runBlocking test coroutine dispatcher?
        freeCompilerArgs += "-Xuse-experimental=kotlin.Experimental"
        freeCompilerArgs += "-Xopt-in=kotlin.RequiresOptIn"
    }
}
testImplementation 'org.jetbrains.kotlinx:kotlinx-coroutines-test:1.4.1'

为什么不使用 asFlow() 运算符然后使用 flatMapMerge

someCoroutineScope.launch(Dispatchers.Default) {
    File("/Users/me/Pictures/").walkTopDown()
        .asFlow()
        .filter { ... only big images... }
        .flatMapMerge(concurrencyLimit) { file ->
            flow {
                emit(runInterruptable { ImageProcessor.fromFile(file) })
            }
        }.catch { ... }
        .collect()
    }

然后你可以限制同时打开的文件,同时仍然同时处理它们。

为了将并行度限制在某个值,有 limitedParallelism function starting from the 1.6.0 version of the kotlinx.coroutines library. It can be called on CoroutineDispatcher 对象。因此,为了限制并行执行的线程,我们可以这样写:

val parallelismLimit = Runtime.getRuntime().availableProcessors()
val limitedDispatcher = Dispatchers.Default.limitedParallelism(parallelismLimit)
val scope = CoroutineScope(limitedDispatcher) // we can set limitedDispatcher for the whole scope

scope.launch { // or we can set limitedDispatcher for a coroutine launch(limitedDispatcher)
    File("/Users/me/Pictures/").walkTopDown()
        .onFail { file, ex -> println("ERROR: $file caused $ex") }
        .filter { ... only big images... }
        .map { file ->
            async {
                ImageProcessor.fromFile(file)
            }
        }.toList().awaitAll()
}

ImageProcessor.fromFile(file) 将使用 parallelismLimit 个线程并行执行。