根据单列的值将数据重塑为不同的列
reshape data to different columns based on value from single column
嗨,我有一个数据框如下(示例)..
time <-c( 8/11/2017 10:21, 8/10/2017 22:34, 8/16/2017 2:28, 8/14/2017 6:17, 8/11/2017 6:33, 8/15/2017 23:46, 8/10/2017 20:10, 8/14/2017 3:35, 8/11/2017 4:09, 8/15/2017 21:05, 8/11/2017 2:16, 8/10/2017 18:17, 8/13/2017 10:02, 8/13/2017 9:08, 8/13/2017 8:32, 8/13/2017 8:20, 8/13/2017 7:56)
code <- c( 1, 3, 2, 2, 1, 2, 2, 1, 1, 2, 2, 2, 2, 2, 1, 1, 2)
var1 <- c( 5, 11, 16, 22, 27, 33, 38, 44, 49, 55, 60, 66, 71, 77, 66, 71, 77)
var2 <- c( 115, 66, 71, 33, 38, 110, 115, 121, 126, 132, 104, 66, 71, 77, 115, 121, 66)
var3 <- c( 38, 44, 49, 55, 60, 66, 71, 77, 66, 71, 77, 132, 104, 66, 71, 77, 115)
time code var1 var2 var3
8/11/2017 10:21 1 5 115 38
8/10/2017 22:34 3 11 66 44
8/16/2017 2:28 2 16 71 49
8/14/2017 6:17 2 22 33 55
8/11/2017 6:33 1 27 38 60
8/15/2017 23:46 2 33 110 66
8/10/2017 20:10 2 38 115 71
8/14/2017 3:35 1 44 121 77
8/11/2017 4:09 1 49 126 66
8/15/2017 21:05 2 55 132 71
8/11/2017 2:16 2 60 104 77
8/10/2017 18:17 2 66 66 132
8/13/2017 10:02 2 71 71 104
8/13/2017 9:08 2 77 77 66
8/13/2017 8:32 1 66 115 71
8/13/2017 8:20 1 71 121 77
8/13/2017 7:56 2 77 66 115
我想使用列 "code" 重铸此数据框。我期望的输出应该如下所示。
time code1_var1 code1_var2 code1_var3 code2_var1 code2_var2 code2_var3 code3_var1 code3_var2 code3_var3
8/11/2017 10:21
8/10/2017 22:34
8/16/2017 2:28
8/14/2017 6:17
8/11/2017 6:33
8/15/2017 23:46
8/10/2017 20:10
8/14/2017 3:35
8/11/2017 4:09
8/15/2017 21:05
8/11/2017 2:16
8/10/2017 18:17
8/13/2017 10:02
8/13/2017 9:08
8/13/2017 8:32
8/13/2017 8:20
8/13/2017 7:56
但是当我在 R 中尝试 dcast 函数时,它给我一个时间变量错误。
请帮我重塑一下objective
注意:由于重塑和缺失数据,结果应该有很多 NA。
最简单的方法是使用来自 "data.table" 的 dcast
甚至来自 base R 的 reshape
。
假设您的向量收集在名为 "d" 的 data.frame
中,请尝试以下操作:
library(data.table)
setDT(d)
x <- dcast(d, time ~ code, value.var = paste0("var", 1:3))
head(x)
# time var1_1 var1_2 var1_3 var2_1 var2_2 var2_3 var3_1 var3_2 var3_3
# 1: 8/10/2017 18:17 NA 66 NA NA 66 NA NA 132 NA
# 2: 8/10/2017 20:10 NA 38 NA NA 115 NA NA 71 NA
# 3: 8/10/2017 22:34 NA NA 11 NA NA 66 NA NA 44
# 4: 8/11/2017 10:21 5 NA NA 115 NA NA 38 NA NA
# 5: 8/11/2017 2:16 NA 60 NA NA 104 NA NA 77 NA
# 6: 8/11/2017 4:09 49 NA NA 126 NA NA 66 NA NA
或
reshape(d, direction = "wide", idvar = "time", timevar = "code")
如果您想使用 tidyverse
,您需要先 gather
,然后创建一个新的 "times" 变量,然后重新整形为宽格式:
library(tidyverse)
d %>%
gather(variable, value, starts_with("var")) %>%
unite(key, code, variable) %>%
spread(key, value)
嗨,我有一个数据框如下(示例)..
time <-c( 8/11/2017 10:21, 8/10/2017 22:34, 8/16/2017 2:28, 8/14/2017 6:17, 8/11/2017 6:33, 8/15/2017 23:46, 8/10/2017 20:10, 8/14/2017 3:35, 8/11/2017 4:09, 8/15/2017 21:05, 8/11/2017 2:16, 8/10/2017 18:17, 8/13/2017 10:02, 8/13/2017 9:08, 8/13/2017 8:32, 8/13/2017 8:20, 8/13/2017 7:56)
code <- c( 1, 3, 2, 2, 1, 2, 2, 1, 1, 2, 2, 2, 2, 2, 1, 1, 2)
var1 <- c( 5, 11, 16, 22, 27, 33, 38, 44, 49, 55, 60, 66, 71, 77, 66, 71, 77)
var2 <- c( 115, 66, 71, 33, 38, 110, 115, 121, 126, 132, 104, 66, 71, 77, 115, 121, 66)
var3 <- c( 38, 44, 49, 55, 60, 66, 71, 77, 66, 71, 77, 132, 104, 66, 71, 77, 115)
time code var1 var2 var3
8/11/2017 10:21 1 5 115 38
8/10/2017 22:34 3 11 66 44
8/16/2017 2:28 2 16 71 49
8/14/2017 6:17 2 22 33 55
8/11/2017 6:33 1 27 38 60
8/15/2017 23:46 2 33 110 66
8/10/2017 20:10 2 38 115 71
8/14/2017 3:35 1 44 121 77
8/11/2017 4:09 1 49 126 66
8/15/2017 21:05 2 55 132 71
8/11/2017 2:16 2 60 104 77
8/10/2017 18:17 2 66 66 132
8/13/2017 10:02 2 71 71 104
8/13/2017 9:08 2 77 77 66
8/13/2017 8:32 1 66 115 71
8/13/2017 8:20 1 71 121 77
8/13/2017 7:56 2 77 66 115
我想使用列 "code" 重铸此数据框。我期望的输出应该如下所示。
time code1_var1 code1_var2 code1_var3 code2_var1 code2_var2 code2_var3 code3_var1 code3_var2 code3_var3
8/11/2017 10:21
8/10/2017 22:34
8/16/2017 2:28
8/14/2017 6:17
8/11/2017 6:33
8/15/2017 23:46
8/10/2017 20:10
8/14/2017 3:35
8/11/2017 4:09
8/15/2017 21:05
8/11/2017 2:16
8/10/2017 18:17
8/13/2017 10:02
8/13/2017 9:08
8/13/2017 8:32
8/13/2017 8:20
8/13/2017 7:56
但是当我在 R 中尝试 dcast 函数时,它给我一个时间变量错误。
请帮我重塑一下objective
注意:由于重塑和缺失数据,结果应该有很多 NA。
最简单的方法是使用来自 "data.table" 的 dcast
甚至来自 base R 的 reshape
。
假设您的向量收集在名为 "d" 的 data.frame
中,请尝试以下操作:
library(data.table)
setDT(d)
x <- dcast(d, time ~ code, value.var = paste0("var", 1:3))
head(x)
# time var1_1 var1_2 var1_3 var2_1 var2_2 var2_3 var3_1 var3_2 var3_3
# 1: 8/10/2017 18:17 NA 66 NA NA 66 NA NA 132 NA
# 2: 8/10/2017 20:10 NA 38 NA NA 115 NA NA 71 NA
# 3: 8/10/2017 22:34 NA NA 11 NA NA 66 NA NA 44
# 4: 8/11/2017 10:21 5 NA NA 115 NA NA 38 NA NA
# 5: 8/11/2017 2:16 NA 60 NA NA 104 NA NA 77 NA
# 6: 8/11/2017 4:09 49 NA NA 126 NA NA 66 NA NA
或
reshape(d, direction = "wide", idvar = "time", timevar = "code")
如果您想使用 tidyverse
,您需要先 gather
,然后创建一个新的 "times" 变量,然后重新整形为宽格式:
library(tidyverse)
d %>%
gather(variable, value, starts_with("var")) %>%
unite(key, code, variable) %>%
spread(key, value)