Tensorflow RNN:如何推断没有重复的序列?

Tensorflow RNN: how to infer a sequence without duplicates?

我正在使用 seq2seq RNN 生成给定种子标签的标签输出序列。在推理步骤中,我想生成仅包含唯一标签的序列(即跳过已经添加到输出序列的标签)。为此,我创建了一个采样器对象,它试图记住已添加到输出中的标签并将它们的 logit 值减少到 -np.inf

这是采样器代码:

class InferenceSampler(object):
    def __init__(self, out_weights, out_biases):
        self._out_weights = tf.transpose(out_weights)
        self._out_biases = out_biases

        self._n_tracks = out_weights.shape[0]
        self.ids_mask = tf.zeros([self._n_tracks], name="playlist_mask")

    def __call__(self, decoder_outputs):
        _logits = tf.matmul(decoder_outputs, self._out_weights)
        _logits = tf.nn.bias_add(_logits, self._out_biases)

        # apply mask
        _logits = _logits + self.ids_mask

        _sample_ids = tf.cast(tf.argmax(_logits, axis=-1), tf.int32)

        # update mask
        step_ids_mask = tf.sparse_to_dense(_sample_ids, [self._n_tracks], -np.inf)
        self.ids_mask = self.ids_mask + step_ids_mask

        return _sample_ids

推理图的代码如下所示:

self._max_playlist_len = tf.placeholder(tf.int32, ())
self._start_tokens = tf.placeholder(tf.int32, [None])

sample_fn = InferenceSampler(out_weights, out_biases)
with tf.name_scope("inf_decoder"):
    def _end_fn(sample_ids):
        return tf.equal(sample_ids, PAD_ITEM_ID)

    def _next_inputs_fn(sample_ids):
        return tf.nn.embedding_lookup(
            track_embs,
            sample_ids
        )

    _start_inputs = tf.nn.embedding_lookup(
        track_embs,
        self._start_tokens
    )

    helper = tf.contrib.seq2seq.InferenceHelper(
        sample_fn=sample_fn,
        sample_shape=[],
        sample_dtype=tf.int32,
        start_inputs=_start_inputs,
        end_fn=_end_fn,
        next_inputs_fn=_next_inputs_fn
    )
    decoder = tf.contrib.seq2seq.BasicDecoder(
        rnn_cell,
        helper,
        rnn_cell.zero_state(tf.shape(self._start_tokens)[0], tf.float32),
        output_layer=projection_layer
    )
    outputs, _, _ = tf.contrib.seq2seq.dynamic_decode(
        decoder,
        maximum_iterations=self._max_playlist_len
    )

self.playlists = outputs.sample_id

不幸的是,结果仍然有重复的标签。此外,当我尝试访问 sample_fn.ids_mask 时,我收到一条错误消息:ValueError: Operation 'inf_decoder/decoder/while/BasicDecoderStep/add_1' has been marked as not fetchable.

我做错了什么?创建这样的 sample_fn 有多合法?

为了克服这个问题,我更新了推理,在每个 RNN 步骤中我输出嵌入向量而不是 item_id。推理完成后,我将嵌入转换为 item_ids

首先,该解决方案最大限度地减少了操作次数。其次,由于我使用了 LSTM/GRU 个单元格,因此它们最大限度地降低了在 RNN 推理的不同步骤中观察到两个绝对相似输出的概率。

新代码如下所示:

with tf.name_scope("inf_decoder"):
    def _sample_fn(decoder_outputs):
        return decoder_outputs

    def _end_fn(sample_ids):
        # infinite
        return tf.tile([False], [n_seeds])

    _start_inputs = tf.nn.embedding_lookup(
        track_embs,
        self._seed_items
    )

    helper = tf.contrib.seq2seq.InferenceHelper(
        sample_fn=_sample_fn,
        sample_shape=[self.emb_size],
        sample_dtype=tf.float32,
        start_inputs=_start_inputs,
        end_fn=_end_fn,
    )
    decoder = tf.contrib.seq2seq.BasicDecoder(
        rnn_cell,
        helper,
        rnn_cell.zero_state(n_seeds, tf.float32),
        output_layer=projection_layer
    )
    outputs, _, _ = tf.contrib.seq2seq.dynamic_decode(
        decoder,
        maximum_iterations=self._max_playlist_len
    )

flat_rnn_output = tf.reshape(outputs.rnn_output, [-1, self.emb_size])
flat_logits = tf.matmul(flat_rnn_output, out_weights, transpose_b=True)
flat_logits = tf.nn.bias_add(flat_logits, out_biases)

item_ids = tf.cast(tf.argmax(flat_logits, axis=-1), tf.int32)
playlists = tf.reshape(item_ids, [n_seeds, -1])

self.playlists = playlists

因此,经过一些调查,我找到了与此线程相关的所有问题的答案。主要问题是:为什么 InferenceSampler 中的 self.ids_mask 不更新?原因在 dynamic_decode 的内部。根据 Tensorflow 问题跟踪器中的 this answer

... only tensors defined inside the loop will be evaluated every loop iteration. All tensors defined outside a loop will be evaluated exactly once.

在我的例子中,self.ids_mask 是在循环外指定的。这意味着我需要重写 dynamic_decode 才能得到我想要的。下面的代码是初始任务的一个稍微修改的版本,但它的作用几乎相同。

让我们从一个新的 dynamic_decode 开始,它应该创建和更新已经预测的掩码收集 sample_ids。我删除了我没有修改的代码,遵循 initial_maskmask 变量。

dynamic_decode:

def dynamic_decode(decoder,
                   output_time_major=False,
                   impute_finished=False,
                   maximum_iterations=None,
                   parallel_iterations=32,
                   swap_memory=False,
                   scope=None):
    ...
        initial_finished, initial_inputs, initial_mask, initial_state = decoder.initialize()
    ...
        def body(time, outputs_ta, state, inputs, finished, sequence_lengths, mask):
            """Internal while_loop body.

            Args:
                time: scalar int32 tensor.
                outputs_ta: structure of TensorArray.
                state: (structure of) state tensors and TensorArrays.
                inputs: (structure of) input tensors.
                finished: bool tensor (keeping track of what's finished).
                sequence_lengths: int32 tensor (keeping track of time of finish).
                mask: SparseTensor to remove already predicted items

            Returns:
                `(time + 1, outputs_ta, next_state, next_inputs, next_finished,
                  next_sequence_lengths, next_mask)`.
            ```
            """
            (next_outputs, decoder_state, next_inputs, next_mask,
             decoder_finished) = decoder.step(time, inputs, state, mask)
            ...
            nest.assert_same_structure(state, decoder_state)
            nest.assert_same_structure(outputs_ta, next_outputs)
            nest.assert_same_structure(inputs, next_inputs)
            nest.assert_same_structure(mask, next_mask)
            ...
            return (time + 1, outputs_ta, next_state, next_inputs, next_finished,
                    next_sequence_lengths, next_mask)

        res = control_flow_ops.while_loop(
            condition,
            body,
            loop_vars=[
                initial_time, initial_outputs_ta, initial_state, initial_inputs,
                initial_finished, initial_sequence_lengths, initial_mask,
            ],
            parallel_iterations=parallel_iterations,
            swap_memory=swap_memory)
    ...
    return final_outputs, final_state, final_sequence_lengths

下一步应该将 mask 传递给 DecoderHelper。以下是 BasicDecoderInferenceHelper 的更新版本:

MaskedDecoder:

class MaskedDecoder(BasicDecoder):
    def step(self, time, inputs, state, mask, name=None):
        with ops.name_scope(name, "MaskedDecoderStep", (time, inputs, state, mask)):
            cell_outputs, cell_state = self._cell(inputs, state)
            if self._output_layer is not None:
                cell_outputs = self._output_layer(cell_outputs)
            sample_ids = self._helper.sample(
                time=time,
                outputs=cell_outputs,
                state=cell_state,
                mask=mask)
            (finished, next_inputs, next_state, next_mask) = self._helper.next_inputs(
                time=time,
                outputs=cell_outputs,
                state=cell_state,
                mask=mask,
                sample_ids=sample_ids)
        outputs = BasicDecoderOutput(cell_outputs, sample_ids)
        return (outputs, next_state, next_inputs, next_mask, finished)

MaskedInferenceHelper:

class MaskedInferenceHelper(Helper):
    """A helper to use during inference with a custom sampling function."""

    def __init__(self, norm_track_embs, features, start_sample_ids):
        self._norm_track_embs = norm_track_embs

        self._batch_size = tf.shape(start_sample_ids)[0]
        self._n_tracks = tf.shape(norm_track_embs)[0]

        self._start_sample_ids = start_sample_ids

        self._sample_shape = tf.TensorShape([])
        self._sample_dtype = tf.int32

        self._features = features

    def _get_sparse_mask(self, sample_ids):
        _mask_shape = tf.convert_to_tensor([
            tf.cast(self._batch_size, dtype=tf.int64),
            tf.cast(self._n_tracks, dtype=tf.int64)
        ])

        _st_rows = tf.range(0, self._batch_size)
        _st_cols = sample_ids

        _st_indices = tf.cast(tf.stack([_st_rows, _st_cols], axis=1), dtype=tf.int64)
        _st_values = tf.fill([self._batch_size], np.inf)

        return tf.SparseTensor(_st_indices, _st_values, _mask_shape)

    ...

    def initialize(self, name=None):
        finished = tf.tile([False], [self._batch_size])
        start_embs = tf.nn.embedding_lookup(self._norm_track_embs, self._start_sample_ids)
        start_inputs = tf.concat([start_embs, self._features], axis=1)
        mask = self._get_sparse_mask(self._start_sample_ids)
        return finished, start_inputs, mask

    def sample(self, time, outputs, state, mask, name=None):
        del time, state  # unused by sample

        outputs = tf.nn.l2_normalize(outputs, axis=-1)
        cos_sims = tf.matmul(outputs, self._norm_track_embs, transpose_b=True)
        cos_sims = cos_sims - tf.sparse_tensor_to_dense(mask)
        sample_ids = tf.cast(tf.argmax(cos_sims, axis=-1), tf.int32)

        return sample_ids

    def next_inputs(self, time, outputs, state, sample_ids, mask, name=None):
        del time, outputs  # unused by next_inputs
        finished = tf.tile([False], [self._batch_size])
        next_embs = tf.nn.embedding_lookup(self._norm_track_embs, sample_ids)
        next_inputs = tf.concat([next_embs, self._features], axis=1)
        next_mask = tf.sparse_add(mask, self._get_sparse_mask(sample_ids))

        return finished, next_inputs, state, next_mask

所以,现在我可以在不重复已经预测的项目的情况下生成推论。