Qucksort 获得 100000 个元素的 StackOverflowError 但 mergesort 没有 Java

Qucksort gets StackOverflowError for 100000 elements but mergesort does not in Java

根据this SOpost:

The common cause for a stack overflow is a bad recursive call.

那为什么它对 10000 个元素 运行 但对 100000 个元素得到 WhosebugError?

快速排序:

public static void quicksort(int[] data, int low, int high) {
    if (low < high) {
        int p = partition(data, low, high);
        quicksort(data, low, p);
        quicksort(data, p + 1, high);
    }
}
public static int partition(int[] data, int low, int high) {
    int pivot = data[low];
    int i = low - 1;
    int j = high + 1;
    while (true) {
        do {
            i++;
        } while (data[i] < pivot);
        do {
            j--;
        } while (data[j] > pivot);
        if (i >= j)
            return j;
        int temp = data[i];
        data[i] = data[j];
        data[j] = temp;
    }
}

合并排序:

public static void mergesort(int[] data, int left, int right) {
    if (left < right){
        int middle = (left + right) / 2;
        mergesort(data, left, middle);
        mergesort(data, middle+1, right);
        merge(data, left, middle, right);
    }
}
private static void merge(int[] data, int left, int middle, int right) {
    int n1 = middle - left + 1;
    int n2 = right - middle;
    int[] dataLeft = new int[n1];
    int[] dataRight = new int[n2];
    for (int i = 0; i < n1; i++)
        dataLeft[i] = data[left+i];
    for (int i = 0; i < n2; i++) 
        dataRight[i] = data[middle+1+i];
    int i = 0, j = 0, k = left;
    while (i < n1 && j < n2) {
        if (dataLeft[i] <= dataRight[j]) {
            data[k] = dataLeft[i];
            i++;
        }
        else {
            data[k] = dataRight[j];
            j++;
        }
        k++;
    }
    while (i < n1) {
        data[k] = dataLeft[i];
        i++;
        k++;
    }
    while (j < n2) {
        data[k] = dataRight[j];
        j++;
        k++;
    }
}

对于归并排序,运行非常好。

这是什么原因?有人能解释一下吗?

这种行为对于选择的具有主元 int pivot = data[low]; 和排序(或大部分)数组的分区方案是可以预期的 - 在这种情况下,堆栈深度可能达到 N=length of array

您必须了解更明智的枢轴选择 - median of threerandom pivot index。这些方法减少了特殊数据集出现不良行为的可能性(但不要完全消除它)

第二步-优化递归方案:

To make sure at most O(log n) space is used, recurse first into the smaller side of the partition, then use a tail call to recurse into the other. So just compare (p-low) and high-p and choose right order of these calls:

    quicksort(data, low, p);
    quicksort(data, p + 1, high);

这些问题及其更多解决方案在 Wiki page 中进行了简要说明,并且在任何算法中进行了详细说明 book/course

请注意,合并排序总是提供最大堆栈深度 log(N)