Qucksort 获得 100000 个元素的 StackOverflowError 但 mergesort 没有 Java
Qucksort gets StackOverflowError for 100000 elements but mergesort does not in Java
根据this SOpost:
The common cause for a stack overflow is a bad recursive call.
那为什么它对 10000 个元素 运行 但对 100000 个元素得到 WhosebugError?
快速排序:
public static void quicksort(int[] data, int low, int high) {
if (low < high) {
int p = partition(data, low, high);
quicksort(data, low, p);
quicksort(data, p + 1, high);
}
}
public static int partition(int[] data, int low, int high) {
int pivot = data[low];
int i = low - 1;
int j = high + 1;
while (true) {
do {
i++;
} while (data[i] < pivot);
do {
j--;
} while (data[j] > pivot);
if (i >= j)
return j;
int temp = data[i];
data[i] = data[j];
data[j] = temp;
}
}
合并排序:
public static void mergesort(int[] data, int left, int right) {
if (left < right){
int middle = (left + right) / 2;
mergesort(data, left, middle);
mergesort(data, middle+1, right);
merge(data, left, middle, right);
}
}
private static void merge(int[] data, int left, int middle, int right) {
int n1 = middle - left + 1;
int n2 = right - middle;
int[] dataLeft = new int[n1];
int[] dataRight = new int[n2];
for (int i = 0; i < n1; i++)
dataLeft[i] = data[left+i];
for (int i = 0; i < n2; i++)
dataRight[i] = data[middle+1+i];
int i = 0, j = 0, k = left;
while (i < n1 && j < n2) {
if (dataLeft[i] <= dataRight[j]) {
data[k] = dataLeft[i];
i++;
}
else {
data[k] = dataRight[j];
j++;
}
k++;
}
while (i < n1) {
data[k] = dataLeft[i];
i++;
k++;
}
while (j < n2) {
data[k] = dataRight[j];
j++;
k++;
}
}
对于归并排序,运行非常好。
这是什么原因?有人能解释一下吗?
这种行为对于选择的具有主元 int pivot = data[low];
和排序(或大部分)数组的分区方案是可以预期的 - 在这种情况下,堆栈深度可能达到 N=length of array
。
您必须了解更明智的枢轴选择 - median of three
或 random pivot index
。这些方法减少了特殊数据集出现不良行为的可能性(但不要完全消除它)
第二步-优化递归方案:
To make sure at most O(log n) space is used, recurse first into the
smaller side of the partition, then use a tail call to recurse into
the other.
So just compare (p-low)
and high-p
and choose right order of these calls:
quicksort(data, low, p);
quicksort(data, p + 1, high);
这些问题及其更多解决方案在 Wiki page 中进行了简要说明,并且在任何算法中进行了详细说明 book/course
请注意,合并排序总是提供最大堆栈深度 log(N)
根据this SOpost:
The common cause for a stack overflow is a bad recursive call.
那为什么它对 10000 个元素 运行 但对 100000 个元素得到 WhosebugError?
快速排序:
public static void quicksort(int[] data, int low, int high) {
if (low < high) {
int p = partition(data, low, high);
quicksort(data, low, p);
quicksort(data, p + 1, high);
}
}
public static int partition(int[] data, int low, int high) {
int pivot = data[low];
int i = low - 1;
int j = high + 1;
while (true) {
do {
i++;
} while (data[i] < pivot);
do {
j--;
} while (data[j] > pivot);
if (i >= j)
return j;
int temp = data[i];
data[i] = data[j];
data[j] = temp;
}
}
合并排序:
public static void mergesort(int[] data, int left, int right) {
if (left < right){
int middle = (left + right) / 2;
mergesort(data, left, middle);
mergesort(data, middle+1, right);
merge(data, left, middle, right);
}
}
private static void merge(int[] data, int left, int middle, int right) {
int n1 = middle - left + 1;
int n2 = right - middle;
int[] dataLeft = new int[n1];
int[] dataRight = new int[n2];
for (int i = 0; i < n1; i++)
dataLeft[i] = data[left+i];
for (int i = 0; i < n2; i++)
dataRight[i] = data[middle+1+i];
int i = 0, j = 0, k = left;
while (i < n1 && j < n2) {
if (dataLeft[i] <= dataRight[j]) {
data[k] = dataLeft[i];
i++;
}
else {
data[k] = dataRight[j];
j++;
}
k++;
}
while (i < n1) {
data[k] = dataLeft[i];
i++;
k++;
}
while (j < n2) {
data[k] = dataRight[j];
j++;
k++;
}
}
对于归并排序,运行非常好。
这是什么原因?有人能解释一下吗?
这种行为对于选择的具有主元 int pivot = data[low];
和排序(或大部分)数组的分区方案是可以预期的 - 在这种情况下,堆栈深度可能达到 N=length of array
。
您必须了解更明智的枢轴选择 - median of three
或 random pivot index
。这些方法减少了特殊数据集出现不良行为的可能性(但不要完全消除它)
第二步-优化递归方案:
To make sure at most O(log n) space is used, recurse first into the smaller side of the partition, then use a tail call to recurse into the other. So just compare
(p-low)
andhigh-p
and choose right order of these calls:
quicksort(data, low, p);
quicksort(data, p + 1, high);
这些问题及其更多解决方案在 Wiki page 中进行了简要说明,并且在任何算法中进行了详细说明 book/course
请注意,合并排序总是提供最大堆栈深度 log(N)