COO 到具有相同 I、J 向量的 CSC 格式
COO to CSC format with the same I,J vectors
现在,我正在调用 K = sparse(I,J,V,n,n) 函数在 Julia 中创建稀疏(对称)K 矩阵。而且,我这样做了很多步骤。
出于内存和效率的考虑,我想修改K.nzval的值,而不是创建一个新的稀疏K矩阵。请注意,每一步的 I 和 J 向量都相同,但非零值 (V) 在每一步都在变化。基本上,我们可以说我们知道 COO 格式的稀疏模式。 (I 和 J 无序,可能有多个 (I[i],J[i]) 条目)
我试图命令我的 COO 格式向量与 CSC/CSR 格式存储相关。但是,我发现它很重要(至少目前如此)。
有没有办法做到这一点或神奇的 "sparse!" 功能?谢谢,
这是与我的问题相关的示例代码。
n=19 # this is much bigger in reality ~ 100000. It is the dimension of a global stiffness matrix in finite element method, and it is highly sparse!
I = rand(1:n,12)
J = rand(1:n,12)
#
for k=365
I,J,val = computeVal() # I,J are the same as before, val is different, and might have duplicates in it.
K = sparse(I,J,val,19,19)
# compute eigs(K,...)
end
# instead I would like to decrease the memory/cost of these operations with following
# we know I,J
for k=365
I,J,val = computeVal() # I,J are the same as before, val is different, and might have duplicates in it.
# note that nonzeros(K) and val might have different size due to dublicate entries.
magical_sparse!(K,val)
# compute eigs(K,...)
end
# what I want to implement
function magical_sparse!(K::SparseMatrixCSC,val::Vector{Float64}) #(Note that this is not a complete function)
# modify K
K.nzval[some_array] = val
end
编辑:
这里给出了一个更具体的例子。
n=4 # dimension of sparse K matrix
I = [1,1,2,2,3,3,4,4,1,4,1]
J = [1,2,1,2,3,4,4,3,2,4,2]
# note that the (I,J) -> (1,2) and (4,4) are duplicates.
V = [1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.]
function computeVal!(V)
# dummy function
# return modified V
rand!(V) # this part is involed, so I will just use rand to represent that we compute new values at each step for V vector.
end
for k=1:365
computeVal!(V)
K = sparse(I,J,V,n,n)
# do things with K
end
# Things to notice:
# println(length(V)) -> 11
# println(length(K.nzval)) -> 8
# I don't want to call sparse function at each step.
# instead I would like to decrease the cost of these operations with following
# we know I,J
for k=1:365
computeVal!(V)
magical_sparse!(K,V)
# do things with K
end
# what I want to implement
function magical_sparse!(K::SparseMatrixCSC,V::Vector{Float64}) #(Note that this is not a complete function)
# modify nonzeros of K and return K
end
当前问题的更新
根据题目的变化,新的解法是:
for k=365
computeVal!(V)
foldl((x,y)->(x[y[1],y[2]]+=y[3];x),fill!(K, 0.0), zip(I,J,V))
# do things with K
end
此解决方案使用了一些技巧,例如使用 fill!
将 K
归零,默认情况下 returns K
然后用作foldl
。同样,使用 ?foldl
应该可以弄清楚这里发生了什么。
旧问题的答案
正在替换
for k=365
val = rand(12)
magical_sparse!(K,val)
# compute eigs(K,...)
end
和
for k=365
rand!(nonzeros(K))
# compute eigs(K,...)
end
应该可以解决问题。
使用 ?rand!
和 ?nonzeros
获取有关各自功能的帮助。
现在,我正在调用 K = sparse(I,J,V,n,n) 函数在 Julia 中创建稀疏(对称)K 矩阵。而且,我这样做了很多步骤。
出于内存和效率的考虑,我想修改K.nzval的值,而不是创建一个新的稀疏K矩阵。请注意,每一步的 I 和 J 向量都相同,但非零值 (V) 在每一步都在变化。基本上,我们可以说我们知道 COO 格式的稀疏模式。 (I 和 J 无序,可能有多个 (I[i],J[i]) 条目)
我试图命令我的 COO 格式向量与 CSC/CSR 格式存储相关。但是,我发现它很重要(至少目前如此)。
有没有办法做到这一点或神奇的 "sparse!" 功能?谢谢,
这是与我的问题相关的示例代码。
n=19 # this is much bigger in reality ~ 100000. It is the dimension of a global stiffness matrix in finite element method, and it is highly sparse!
I = rand(1:n,12)
J = rand(1:n,12)
#
for k=365
I,J,val = computeVal() # I,J are the same as before, val is different, and might have duplicates in it.
K = sparse(I,J,val,19,19)
# compute eigs(K,...)
end
# instead I would like to decrease the memory/cost of these operations with following
# we know I,J
for k=365
I,J,val = computeVal() # I,J are the same as before, val is different, and might have duplicates in it.
# note that nonzeros(K) and val might have different size due to dublicate entries.
magical_sparse!(K,val)
# compute eigs(K,...)
end
# what I want to implement
function magical_sparse!(K::SparseMatrixCSC,val::Vector{Float64}) #(Note that this is not a complete function)
# modify K
K.nzval[some_array] = val
end
编辑:
这里给出了一个更具体的例子。
n=4 # dimension of sparse K matrix
I = [1,1,2,2,3,3,4,4,1,4,1]
J = [1,2,1,2,3,4,4,3,2,4,2]
# note that the (I,J) -> (1,2) and (4,4) are duplicates.
V = [1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.]
function computeVal!(V)
# dummy function
# return modified V
rand!(V) # this part is involed, so I will just use rand to represent that we compute new values at each step for V vector.
end
for k=1:365
computeVal!(V)
K = sparse(I,J,V,n,n)
# do things with K
end
# Things to notice:
# println(length(V)) -> 11
# println(length(K.nzval)) -> 8
# I don't want to call sparse function at each step.
# instead I would like to decrease the cost of these operations with following
# we know I,J
for k=1:365
computeVal!(V)
magical_sparse!(K,V)
# do things with K
end
# what I want to implement
function magical_sparse!(K::SparseMatrixCSC,V::Vector{Float64}) #(Note that this is not a complete function)
# modify nonzeros of K and return K
end
当前问题的更新
根据题目的变化,新的解法是:
for k=365
computeVal!(V)
foldl((x,y)->(x[y[1],y[2]]+=y[3];x),fill!(K, 0.0), zip(I,J,V))
# do things with K
end
此解决方案使用了一些技巧,例如使用 fill!
将 K
归零,默认情况下 returns K
然后用作foldl
。同样,使用 ?foldl
应该可以弄清楚这里发生了什么。
旧问题的答案
正在替换
for k=365
val = rand(12)
magical_sparse!(K,val)
# compute eigs(K,...)
end
和
for k=365
rand!(nonzeros(K))
# compute eigs(K,...)
end
应该可以解决问题。
使用 ?rand!
和 ?nonzeros
获取有关各自功能的帮助。