有谁知道我应该如何使用 animatedline 来立即给我画一个轨道?
Does anybody know how should I use animatedline in order to draw me an orbit immediately?
这是主要代码
%%%%%%%%%%%% Valori pentru Rcsc
%%%%Pozitiile si vitezele pe cele 3 axe
y0(1,1)= 743322.3616 ;
y0(2,1)= -6346021.219 ;
y0(3,1)= -3394131.349 ;
y0(4,1)= 5142.38067;
y0(5,1)= 4487.44895 ;
y0(6,1)= -7264.00872;
%%%% Timpul
tspan=[0 :864];
%%%% Masa(kg) si aria suprafetei satelitului (m^2)
m = 217 ; %320;
A = 1.2; %8;
%%%% Metoda Runge-Kutta de ordin 4
h=1;
y = zeros(6, tspan(end)/h);
y(:,1) = y0;
for i=1:(tspan(end)/h)
H=sqrt(y(1,i)^2+y(2,i)^2+y(3,i)^2);
k_1 = proiectia(tspan(i), y(:,i), H, m, A, y(4:6, i));
k1=double(k_1);
k_2 = proiectia(tspan(i)+0.5*h, y(:,i)+0.5*h*k_1, H, m, A, y(4:6, i));
k2=double(k_2);
k_3 = proiectia((tspan(i)+0.5*h), (y(:,i)+0.5*h*k_2), H, m, A, y(4:6, i));
k3=double(k_3);
k_4 = proiectia((tspan(i)+h),(y(:,i)+k_3*h), H, m, A, y(4:6, i));
k4=double(k_4);
y(:,i+1) = double(y(:,i) + (1/6)*(k1+2*k2+2*k3+k4)*h);
end
%%% Distanta satelitului
Rcsc = ((y(1,:).^2 + y(2,:).^2 + y(3,:).^2).^0.5);
n=50;
%plot(tspan,Rcsc)
%% Textured 3D Earth example
%
% Ryan Gray
% 8 Sep 2004
% Revised 9 March 2006, 31 Jan 2006, 16 Oct 2013
%% Options
space_color = 'k';
npanels = 180; % Number of globe panels around the equator deg/panel = 360/npanels
alpha = 1; % globe transparency level, 1 = opaque, through 0 = invisible
GMST0 = []; % Don't set up rotatable globe (ECEF)
%GMST0 = 4.89496121282306; % Set up a rotatable globe at J2000.0
% Earth texture image
% Anything imread() will handle, but needs to be a 2:1 unprojected globe
% image.
image_file = 'https://upload.wikimedia.org/wikipedia/commons/thumb/c/cd/Land_ocean_ice_2048.jpg/1024px-Land_ocean_ice_2048.jpg';
% Mean spherical earth
erad = 6371008.7714; % equatorial radius (meters)
prad = 6371008.7714; % polar radius (meters)
erot = 7.2921158553e-5; % earth rotation rate (radians/sec)
%% Create figure
figure('Color', space_color);
hold on;
orbit=animatedline;
addpoints(orbit,y(1,:),y(2,:),y(3,:));
drawnow
% Turn off the normal axes
set(gca, 'NextPlot','add', 'Visible','off');
axis equal;
axis auto;
% Set initial view
view(0,30);
axis vis3d;
%% Create wireframe globe
% Create a 3D meshgrid of the sphere points using the ellipsoid function
[x, y, z] = ellipsoid(0, 0, 0, erad, erad, prad, npanels);
globe = surf(x, y, -z, 'FaceColor', 'none', 'EdgeColor', 0.5*[1 1 1]);
%% Texturemap the globe
% Load Earth image for texture map
cdata = imread(image_file);
% Set image as color data (cdata) property, and set face color to indicate
% a texturemap, which Matlab expects to be in cdata. Turn off the mesh edges.
set(globe, 'FaceColor', 'texturemap', 'CData', cdata, 'FaceAlpha', alpha, 'EdgeColor', 'none');
我想做的是,当我 运行 脚本应该出现一个带有地球的图形,并且在 运行ge kutta 算法计算位置时它应该上传轨道实时。但是现在只有在计算 Rk 算法直到 tspan 结束并且图中的轨道已经上传而没有中间点时才会出现该图。我应该怎么办?我在 github 上看到其他人使用 animatedline 和 drawnow。
我在考虑
orbit=animatedline;
addpoints(orbit,y(1,:),y(2,:),y(3,:));
drawnow
end
但是我应该把这条线放在哪里呢?如果我把它放在 rk 循环中它不起作用,如果我把它
% Create figure
figure('Color', space_color);
%%
orbit=animatedline;
addpoints(orbit,y(1,:),y(2,:),y(3,:));
drawnow
它先显示一个带轨道的图,但没有中间点,然后显示一个与地球不同的图,而轨道和地球应该在同一个图中。
您使用 animatedline
的方式有误。
行:
orbit = animatedline;
应该放在计算点的循环之前,行:
addpoints(orbit,y(1,i),y(2,i),y(3,i));
drawnow
应该放在其中,以便在每次迭代时向该行添加一个(或多个)点。但是,更好的方法是先计算所有轨道,然后使用动画循环。这样您就可以更好地控制动画的速率。这是一个使用你的案例的小例子:
orbit = animatedline;
for k = 1:size(y,2)
addpoints(orbit,y(1,k),y(2,k),y(3,k));
drawnow
end
备选方案
不要使用animated line
只是不断更新绘图中的数据。这是一个简单的练习:
% create a sphere with earth map on it:
set(gcf,'Color','k')
earth = imread('earth.jpg');
[X,Y,Z] = sphere(50);
warp(-X,Y,-Z,earth)
axis off
view(-46,17)
% set an animation of a simple orbit:
Nframes = 100; % number of steps in the orbit
% calculation of the orbit:
orb = linspace(-pi,pi,Nframes);
x = cos(orb).*1.5;
y = sin(orb);
hold on
% plot the whole orbit invisible, just for setting the axes limits:
tmp = plot(x,y,'Color','none');
p = plot(x(1),y(1),'LineWidth',3,'Color','m'); % plot the first step
hold off
for k = 1:numel(orb)
p.XData = x(1:k); % update the data of the plot
p.YData = y(1:k);
pause(0.05) % delay
end
结果:
这是主要代码
%%%%%%%%%%%% Valori pentru Rcsc
%%%%Pozitiile si vitezele pe cele 3 axe
y0(1,1)= 743322.3616 ;
y0(2,1)= -6346021.219 ;
y0(3,1)= -3394131.349 ;
y0(4,1)= 5142.38067;
y0(5,1)= 4487.44895 ;
y0(6,1)= -7264.00872;
%%%% Timpul
tspan=[0 :864];
%%%% Masa(kg) si aria suprafetei satelitului (m^2)
m = 217 ; %320;
A = 1.2; %8;
%%%% Metoda Runge-Kutta de ordin 4
h=1;
y = zeros(6, tspan(end)/h);
y(:,1) = y0;
for i=1:(tspan(end)/h)
H=sqrt(y(1,i)^2+y(2,i)^2+y(3,i)^2);
k_1 = proiectia(tspan(i), y(:,i), H, m, A, y(4:6, i));
k1=double(k_1);
k_2 = proiectia(tspan(i)+0.5*h, y(:,i)+0.5*h*k_1, H, m, A, y(4:6, i));
k2=double(k_2);
k_3 = proiectia((tspan(i)+0.5*h), (y(:,i)+0.5*h*k_2), H, m, A, y(4:6, i));
k3=double(k_3);
k_4 = proiectia((tspan(i)+h),(y(:,i)+k_3*h), H, m, A, y(4:6, i));
k4=double(k_4);
y(:,i+1) = double(y(:,i) + (1/6)*(k1+2*k2+2*k3+k4)*h);
end
%%% Distanta satelitului
Rcsc = ((y(1,:).^2 + y(2,:).^2 + y(3,:).^2).^0.5);
n=50;
%plot(tspan,Rcsc)
%% Textured 3D Earth example
%
% Ryan Gray
% 8 Sep 2004
% Revised 9 March 2006, 31 Jan 2006, 16 Oct 2013
%% Options
space_color = 'k';
npanels = 180; % Number of globe panels around the equator deg/panel = 360/npanels
alpha = 1; % globe transparency level, 1 = opaque, through 0 = invisible
GMST0 = []; % Don't set up rotatable globe (ECEF)
%GMST0 = 4.89496121282306; % Set up a rotatable globe at J2000.0
% Earth texture image
% Anything imread() will handle, but needs to be a 2:1 unprojected globe
% image.
image_file = 'https://upload.wikimedia.org/wikipedia/commons/thumb/c/cd/Land_ocean_ice_2048.jpg/1024px-Land_ocean_ice_2048.jpg';
% Mean spherical earth
erad = 6371008.7714; % equatorial radius (meters)
prad = 6371008.7714; % polar radius (meters)
erot = 7.2921158553e-5; % earth rotation rate (radians/sec)
%% Create figure
figure('Color', space_color);
hold on;
orbit=animatedline;
addpoints(orbit,y(1,:),y(2,:),y(3,:));
drawnow
% Turn off the normal axes
set(gca, 'NextPlot','add', 'Visible','off');
axis equal;
axis auto;
% Set initial view
view(0,30);
axis vis3d;
%% Create wireframe globe
% Create a 3D meshgrid of the sphere points using the ellipsoid function
[x, y, z] = ellipsoid(0, 0, 0, erad, erad, prad, npanels);
globe = surf(x, y, -z, 'FaceColor', 'none', 'EdgeColor', 0.5*[1 1 1]);
%% Texturemap the globe
% Load Earth image for texture map
cdata = imread(image_file);
% Set image as color data (cdata) property, and set face color to indicate
% a texturemap, which Matlab expects to be in cdata. Turn off the mesh edges.
set(globe, 'FaceColor', 'texturemap', 'CData', cdata, 'FaceAlpha', alpha, 'EdgeColor', 'none');
我想做的是,当我 运行 脚本应该出现一个带有地球的图形,并且在 运行ge kutta 算法计算位置时它应该上传轨道实时。但是现在只有在计算 Rk 算法直到 tspan 结束并且图中的轨道已经上传而没有中间点时才会出现该图。我应该怎么办?我在 github 上看到其他人使用 animatedline 和 drawnow。 我在考虑
orbit=animatedline;
addpoints(orbit,y(1,:),y(2,:),y(3,:));
drawnow
end
但是我应该把这条线放在哪里呢?如果我把它放在 rk 循环中它不起作用,如果我把它
% Create figure
figure('Color', space_color);
%%
orbit=animatedline;
addpoints(orbit,y(1,:),y(2,:),y(3,:));
drawnow
它先显示一个带轨道的图,但没有中间点,然后显示一个与地球不同的图,而轨道和地球应该在同一个图中。
您使用 animatedline
的方式有误。
行:
orbit = animatedline;
应该放在计算点的循环之前,行:
addpoints(orbit,y(1,i),y(2,i),y(3,i));
drawnow
应该放在其中,以便在每次迭代时向该行添加一个(或多个)点。但是,更好的方法是先计算所有轨道,然后使用动画循环。这样您就可以更好地控制动画的速率。这是一个使用你的案例的小例子:
orbit = animatedline;
for k = 1:size(y,2)
addpoints(orbit,y(1,k),y(2,k),y(3,k));
drawnow
end
备选方案
不要使用animated line
只是不断更新绘图中的数据。这是一个简单的练习:
% create a sphere with earth map on it:
set(gcf,'Color','k')
earth = imread('earth.jpg');
[X,Y,Z] = sphere(50);
warp(-X,Y,-Z,earth)
axis off
view(-46,17)
% set an animation of a simple orbit:
Nframes = 100; % number of steps in the orbit
% calculation of the orbit:
orb = linspace(-pi,pi,Nframes);
x = cos(orb).*1.5;
y = sin(orb);
hold on
% plot the whole orbit invisible, just for setting the axes limits:
tmp = plot(x,y,'Color','none');
p = plot(x(1),y(1),'LineWidth',3,'Color','m'); % plot the first step
hold off
for k = 1:numel(orb)
p.XData = x(1:k); % update the data of the plot
p.YData = y(1:k);
pause(0.05) % delay
end
结果: