从 Apriori 中移除反向 (reverse/duplicate) 规则导致 R

Removing inverted (reverse/duplicate) rules from Apriori result in R

我已经在我的数据集上实现了 Apriori 算法。我得到的规则是颠倒的重复,即:

inspect(head(rules))
    lhs                        rhs                     support    confidence lift count
[1] {252-ON-OFF}            => {L30-ATLANTIC}          0.04545455 1          22   1    
[2] {L30-ATLANTIC}          => {252-ON-OFF}            0.04545455 1          22   1    
[3] {252-ON-OFF}            => {M01-A molle biconiche} 0.04545455 1          22   1    
[4] {M01-A molle biconiche} => {252-ON-OFF}            0.04545455 1          22   1    
[5] {L30-ATLANTIC}          => {M01-A molle biconiche} 0.04545455 1          22   1    
[6] {M01-A molle biconiche} => {L30-ATLANTIC}          0.04545455 1          22   1 

可以看出规则 1 和规则 2 是相同的,只是 LHS 和 RHS 互换了。有什么方法可以从最终结果中删除这些规则吗?

我看到了 post link 但建议的解决方案不正确。 我也看到了这个 post 并且我尝试了这两个解决方案:

解决方案 A:

rules <- rules[!is.redundant(rules)]

但结果总是一样的:

inspect(head(rules))
    lhs                        rhs                     support    confidence lift count
[1] {252-ON-OFF}            => {L30-ATLANTIC}          0.04545455 1          22   1    
[2] {L30-ATLANTIC}          => {252-ON-OFF}            0.04545455 1          22   1    
[3] {252-ON-OFF}            => {M01-A molle biconiche} 0.04545455 1          22   1    
[4] {M01-A molle biconiche} => {252-ON-OFF}            0.04545455 1          22   1    
[5] {L30-ATLANTIC}          => {M01-A molle biconiche} 0.04545455 1          22   1    
[6] {M01-A molle biconiche} => {L30-ATLANTIC}          0.04545455 1          22   1 

解决方案 B:

# find redundant rules
subset.matrix <- is.subset(rules, rules)
subset.matrix[lower.tri(subset.matrix, diag=T)]
redundant <- colSums(subset.matrix, na.rm=T) > 1
which(redundant)
rules.pruned <- rules[!redundant]
inspect(rules.pruned)
     lhs    rhs                           support    confidence lift count
[1]  {}  => {BRC-BRC}                     0.04545455 0.04545455 1     1   
[2]  {}  => {111-WINK}                    0.04545455 0.04545455 1     1   
[3]  {}  => {305-INGRAM HIGH}             0.04545455 0.04545455 1     1   
[4]  {}  => {952-REVERS}                  0.04545455 0.04545455 1     1   
[5]  {}  => {002-LC2}                     0.09090909 0.09090909 1     2   
[6]  {}  => {252-ON-OFF}                  0.04545455 0.04545455 1     1   
[7]  {}  => {L30-ATLANTIC}                0.04545455 0.04545455 1     1   
[8]  {}  => {M01-A molle biconiche}       0.04545455 0.04545455 1     1   
[9]  {}  => {678-Portovenere}             0.04545455 0.04545455 1     1   
[10] {}  => {251-MET T.}                  0.04545455 0.04545455 1     1   
[11] {}  => {324-D.S.3}                   0.04545455 0.04545455 1     1   
[12] {}  => {L04-YUME}                    0.04545455 0.04545455 1     1   
[13] {}  => {969-Lubekka}                 0.04545455 0.04545455 1     1   
[14] {}  => {000-FUORI LISTINO}           0.04545455 0.04545455 1     1   
[15] {}  => {007-LC7}                     0.04545455 0.04545455 1     1   
[16] {}  => {341-COS}                     0.04545455 0.04545455 1     1   
[17] {}  => {601-ROBIE 1}                 0.04545455 0.04545455 1     1   
[18] {}  => {608-TALIESIN 2}              0.04545455 0.04545455 1     1   
[19] {}  => {610-ROBIE 2}                 0.04545455 0.04545455 1     1   
[20] {}  => {615-HUSSER}                  0.04545455 0.04545455 1     1   
[21] {}  => {831-DAKOTA}                  0.04545455 0.04545455 1     1   
[22] {}  => {997-997}                     0.27272727 0.27272727 1     6   
[23] {}  => {412-CAB}                     0.09090909 0.09090909 1     2   
[24] {}  => {S01-A doghe senza movimenti} 0.09090909 0.09090909 1     2   
[25] {}  => {708-Genoa}                   0.09090909 0.09090909 1     2   
[26] {}  => {998-998}                     0.54545455 0.54545455 1    12 

有没有人遇到同样的问题并且知道如何解决?感谢您的帮助

您可以通过将您的规则对象转换为 data.frame 并迭代比较 LHS/RHS 事务向量来使用蛮力来完成。这是一个使用 grocery.csv dataset:

的例子
inspect(head(groceryrules))

# convert rules object to data.frame
trans_frame <- data.frame(lhs = labels(lhs(groceryrules)), rhs = labels(rhs(groceryrules)), groceryrules@quality) 

# loop through each row of trans_frame
rem_indx <- NULL
for(i in 1:nrow(trans_frame)) {
    trans_vec_a <- c(as.character(trans_frame[i,1]), as.character(trans_frame[i,2]))
    # for each row evaluated, compare to every other row in trans_frame
    for(k in 1:nrow(trans_frame[-i,])) {
        trans_vec_b <- c(as.character(trans_frame[-i,][k,1]), as.character(trans_frame[-i,][k,2]))
        if(setequal(trans_vec_a, trans_vec_b)) {
           # store the index to remove
           rem_indx[i] <- i  
        }
    }
}

这为您提供了一个应删除的索引向量(因为它们是 duplicate/inverted)

duped_trans <- trans_frame[rem_indx[!is.na(rem_indx)], ]
duped_trans

我们可以看到它确定了 duplicates/inverts 的 2 笔交易。

现在我们可以保留非重复交易:

deduped_trans <- trans_frame[-rem_indx[!is.na(rem_indx)], ]

问题当然是上面的算法效率极低。杂货店数据集只有 463 笔交易。对于任何合理数量的交易,您都需要对该函数进行向量化。

问题是您的数据集,而不是算法。在结果中,您看到许多规则的计数为 1(项目组合在事务中出现一次)并且规则的置信度为 1,其 "inverse." 这意味着您需要更多数据并增加最小支持度。

如果您仍想有效地摆脱此类 "duplicate" 规则,则可以执行以下操作:

> library(arules)
> data(Groceries)
> rules <- apriori(Groceries, parameter = list(support = 0.001))
> rules
set of 410 rules

> gi <- generatingItemsets(rules)
> d <- which(duplicated(gi))
> rules[-d]
set of 385 rules 

代码只保留每组规则的第一条规则完全相同