有没有办法获取图片中已识别对象的颜色?
Is there a way to get the color of a recognized object inside a picture?
我正在使用 Tensorflow in order to recognize object in a provided picture , following this tutorial and using this repo 我成功地使我的程序 return 成为图片中的对象。
例如,这是我用作输入的图片:
这是我的程序的输出:
我只想得到被识别物品的颜色(最后一种情况是红色球衣),可以吗?
这是代码(来自上次link,只是稍作改动)
/* Copyright 2016 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
package com.test.sec.compoment;
import java.io.IOException;
import java.io.PrintStream;
import java.nio.charset.Charset;
import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.Paths;
import java.util.Arrays;
import java.util.List;
import org.tensorflow.DataType;
import org.tensorflow.Graph;
import org.tensorflow.Output;
import org.tensorflow.Session;
import org.tensorflow.Tensor;
import org.tensorflow.TensorFlow;
import org.tensorflow.types.UInt8;
/** Sample use of the TensorFlow Java API to label images using a pre-trained model. */
public class ImageRecognition {
private static void printUsage(PrintStream s) {
final String url =
"https://storage.googleapis.com/download.tensorflow.org/models/inception5h.zip";
s.println(
"Java program that uses a pre-trained Inception model (http://arxiv.org/abs/1512.00567)");
s.println("to label JPEG images.");
s.println("TensorFlow version: " + TensorFlow.version());
s.println();
s.println("Usage: label_image <model dir> <image file>");
s.println();
s.println("Where:");
s.println("<model dir> is a directory containing the unzipped contents of the inception model");
s.println(" (from " + url + ")");
s.println("<image file> is the path to a JPEG image file");
}
public void index() {
String modelDir = "C:/Users/Admin/Downloads/inception5h";
String imageFile = "C:/Users/Admin/Desktop/red-tshirt.jpg";
byte[] graphDef = readAllBytesOrExit(Paths.get(modelDir, "tensorflow_inception_graph.pb"));
List<String> labels =
readAllLinesOrExit(Paths.get(modelDir, "imagenet_comp_graph_label_strings.txt"));
byte[] imageBytes = readAllBytesOrExit(Paths.get(imageFile));
try (Tensor<Float> image = constructAndExecuteGraphToNormalizeImage(imageBytes)) {
float[] labelProbabilities = executeInceptionGraph(graphDef, image);
int bestLabelIdx = maxIndex(labelProbabilities);
System.out.println(
String.format("BEST MATCH: %s (%.2f%% likely)",
labels.get(bestLabelIdx),
labelProbabilities[bestLabelIdx] * 100f));
}
}
private static Tensor<Float> constructAndExecuteGraphToNormalizeImage(byte[] imageBytes) {
try (Graph g = new Graph()) {
GraphBuilder b = new GraphBuilder(g);
// Some constants specific to the pre-trained model at:
// https://storage.googleapis.com/download.tensorflow.org/models/inception5h.zip
//
// - The model was trained with images scaled to 224x224 pixels.
// - The colors, represented as R, G, B in 1-byte each were converted to
// float using (value - Mean)/Scale.
final int H = 224;
final int W = 224;
final float mean = 117f;
final float scale = 1f;
// Since the graph is being constructed once per execution here, we can use a constant for the
// input image. If the graph were to be re-used for multiple input images, a placeholder would
// have been more appropriate.
final Output<String> input = b.constant("input", imageBytes);
final Output<Float> output =
b.div(
b.sub(
b.resizeBilinear(
b.expandDims(
b.cast(b.decodeJpeg(input, 3), Float.class),
b.constant("make_batch", 0)),
b.constant("size", new int[] {H, W})),
b.constant("mean", mean)),
b.constant("scale", scale));
try (Session s = new Session(g)) {
return s.runner().fetch(output.op().name()).run().get(0).expect(Float.class);
}
}
}
private static float[] executeInceptionGraph(byte[] graphDef, Tensor<Float> image) {
try (Graph g = new Graph()) {
g.importGraphDef(graphDef);
try (Session s = new Session(g);
Tensor<Float> result =
s.runner().feed("input", image).fetch("output").run().get(0).expect(Float.class)) {
final long[] rshape = result.shape();
if (result.numDimensions() != 2 || rshape[0] != 1) {
throw new RuntimeException(
String.format(
"Expected model to produce a [1 N] shaped tensor where N is the number of labels, instead it produced one with shape %s",
Arrays.toString(rshape)));
}
int nlabels = (int) rshape[1];
return result.copyTo(new float[1][nlabels])[0];
}
}
}
private static int maxIndex(float[] probabilities) {
int best = 0;
for (int i = 1; i < probabilities.length; ++i) {
if (probabilities[i] > probabilities[best]) {
best = i;
}
}
return best;
}
private static byte[] readAllBytesOrExit(Path path) {
try {
return Files.readAllBytes(path);
} catch (IOException e) {
System.err.println("Failed to read [" + path + "]: " + e.getMessage());
System.exit(1);
}
return null;
}
private static List<String> readAllLinesOrExit(Path path) {
try {
return Files.readAllLines(path, Charset.forName("UTF-8"));
} catch (IOException e) {
System.err.println("Failed to read [" + path + "]: " + e.getMessage());
System.exit(0);
}
return null;
}
// In the fullness of time, equivalents of the methods of this class should be auto-generated from
// the OpDefs linked into libtensorflow_jni.so. That would match what is done in other languages
// like Python, C++ and Go.
static class GraphBuilder {
GraphBuilder(Graph g) {
this.g = g;
}
Output<Float> div(Output<Float> x, Output<Float> y) {
return binaryOp("Div", x, y);
}
<T> Output<T> sub(Output<T> x, Output<T> y) {
return binaryOp("Sub", x, y);
}
<T> Output<Float> resizeBilinear(Output<T> images, Output<Integer> size) {
return binaryOp3("ResizeBilinear", images, size);
}
<T> Output<T> expandDims(Output<T> input, Output<Integer> dim) {
return binaryOp3("ExpandDims", input, dim);
}
<T, U> Output<U> cast(Output<T> value, Class<U> type) {
DataType dtype = DataType.fromClass(type);
return g.opBuilder("Cast", "Cast")
.addInput(value)
.setAttr("DstT", dtype)
.build()
.<U>output(0);
}
Output<UInt8> decodeJpeg(Output<String> contents, long channels) {
return g.opBuilder("DecodeJpeg", "DecodeJpeg")
.addInput(contents)
.setAttr("channels", channels)
.build()
.<UInt8>output(0);
}
<T> Output<T> constant(String name, Object value, Class<T> type) {
try (Tensor<T> t = Tensor.<T>create(value, type)) {
return g.opBuilder("Const", name)
.setAttr("dtype", DataType.fromClass(type))
.setAttr("value", t)
.build()
.<T>output(0);
}
}
Output<String> constant(String name, byte[] value) {
return this.constant(name, value, String.class);
}
Output<Integer> constant(String name, int value) {
return this.constant(name, value, Integer.class);
}
Output<Integer> constant(String name, int[] value) {
return this.constant(name, value, Integer.class);
}
Output<Float> constant(String name, float value) {
return this.constant(name, value, Float.class);
}
private <T> Output<T> binaryOp(String type, Output<T> in1, Output<T> in2) {
return g.opBuilder(type, type).addInput(in1).addInput(in2).build().<T>output(0);
}
private <T, U, V> Output<T> binaryOp3(String type, Output<U> in1, Output<V> in2) {
return g.opBuilder(type, type).addInput(in1).addInput(in2).build().<T>output(0);
}
private Graph g;
}
}
您正在使用预测给定图像标签的代码,即将图像从一些经过训练的图像中分类类因此您不知道对象的确切像素。
因此,我建议您执行以下任一操作,
- 使用object detector检测对象的位置并获取边界框。然后得到像素点最多的颜色。
- 使用像 this 这样的像素级分类(分割)来获取对象的精确像素。
请注意,您可能需要为您的对象手动训练网络(或模型)
编辑:
对于 Java 对象检测示例,请查看 this project which is coded for android
, but it should be straightforward to use them in desktop applications. More specifically look into this 部分。
您不需要同时进行对象检测和分割,但如果您愿意,我想首先尝试使用 python(上面提供的 link 训练分割模型) 然后像对象检测模型一样使用 java 中的模型。
编辑 2:
我添加了 simple object detection client in java
which uses Tensorflow Object detection API models 只是为了向您展示您可以在 java 中使用任何冻结模型。
此外,检查这个漂亮的 repository,它使用像素级分割。
您必须先移除背景像素以仅保留您的对象,然后构建包含所有剩余像素的列表,然后计算平均颜色。
关于颜色检测方法,你可以看看Color
图像处理:新兴应用、Color Detection, and most especially How we handle color detection.
使用下面给出 RGB 颜色代码的代码片段,但是由于图像可能包含不同的颜色像素,因此您需要决定一个点(例如:中心)并获得垂直 (Y) 和水平的 RGB 代码(X) 坐标。
//create image object from byte array
BufferedImage imageobj=null;
Color[][] imgcolor=null;
try {
imageobj=ImageIO.read(new ByteArrayInputStream(imageBytes));
} catch (IOException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
if(imageobj!=null){
imgcolor=new Color[imageobj.getWidth()][imageobj.getHeight()];
for(int i=0;i<imageobj.getWidth();i++){
for(int j=0;j<imageobj.getHeight();j++){
imgcolor[i][j]=new Color(imageobj.getRGB(i, j));
}
}
}
if(imgcolor!=null && imgcolor.length>0){
System.out.println("Object Color "+imgcolor[imageobj.getWidth()/2][imageobj.getHeight()/2].toString());
}
我正在使用 Tensorflow in order to recognize object in a provided picture , following this tutorial and using this repo 我成功地使我的程序 return 成为图片中的对象。 例如,这是我用作输入的图片:
这是我的程序的输出:
我只想得到被识别物品的颜色(最后一种情况是红色球衣),可以吗?
这是代码(来自上次link,只是稍作改动)
/* Copyright 2016 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
package com.test.sec.compoment;
import java.io.IOException;
import java.io.PrintStream;
import java.nio.charset.Charset;
import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.Paths;
import java.util.Arrays;
import java.util.List;
import org.tensorflow.DataType;
import org.tensorflow.Graph;
import org.tensorflow.Output;
import org.tensorflow.Session;
import org.tensorflow.Tensor;
import org.tensorflow.TensorFlow;
import org.tensorflow.types.UInt8;
/** Sample use of the TensorFlow Java API to label images using a pre-trained model. */
public class ImageRecognition {
private static void printUsage(PrintStream s) {
final String url =
"https://storage.googleapis.com/download.tensorflow.org/models/inception5h.zip";
s.println(
"Java program that uses a pre-trained Inception model (http://arxiv.org/abs/1512.00567)");
s.println("to label JPEG images.");
s.println("TensorFlow version: " + TensorFlow.version());
s.println();
s.println("Usage: label_image <model dir> <image file>");
s.println();
s.println("Where:");
s.println("<model dir> is a directory containing the unzipped contents of the inception model");
s.println(" (from " + url + ")");
s.println("<image file> is the path to a JPEG image file");
}
public void index() {
String modelDir = "C:/Users/Admin/Downloads/inception5h";
String imageFile = "C:/Users/Admin/Desktop/red-tshirt.jpg";
byte[] graphDef = readAllBytesOrExit(Paths.get(modelDir, "tensorflow_inception_graph.pb"));
List<String> labels =
readAllLinesOrExit(Paths.get(modelDir, "imagenet_comp_graph_label_strings.txt"));
byte[] imageBytes = readAllBytesOrExit(Paths.get(imageFile));
try (Tensor<Float> image = constructAndExecuteGraphToNormalizeImage(imageBytes)) {
float[] labelProbabilities = executeInceptionGraph(graphDef, image);
int bestLabelIdx = maxIndex(labelProbabilities);
System.out.println(
String.format("BEST MATCH: %s (%.2f%% likely)",
labels.get(bestLabelIdx),
labelProbabilities[bestLabelIdx] * 100f));
}
}
private static Tensor<Float> constructAndExecuteGraphToNormalizeImage(byte[] imageBytes) {
try (Graph g = new Graph()) {
GraphBuilder b = new GraphBuilder(g);
// Some constants specific to the pre-trained model at:
// https://storage.googleapis.com/download.tensorflow.org/models/inception5h.zip
//
// - The model was trained with images scaled to 224x224 pixels.
// - The colors, represented as R, G, B in 1-byte each were converted to
// float using (value - Mean)/Scale.
final int H = 224;
final int W = 224;
final float mean = 117f;
final float scale = 1f;
// Since the graph is being constructed once per execution here, we can use a constant for the
// input image. If the graph were to be re-used for multiple input images, a placeholder would
// have been more appropriate.
final Output<String> input = b.constant("input", imageBytes);
final Output<Float> output =
b.div(
b.sub(
b.resizeBilinear(
b.expandDims(
b.cast(b.decodeJpeg(input, 3), Float.class),
b.constant("make_batch", 0)),
b.constant("size", new int[] {H, W})),
b.constant("mean", mean)),
b.constant("scale", scale));
try (Session s = new Session(g)) {
return s.runner().fetch(output.op().name()).run().get(0).expect(Float.class);
}
}
}
private static float[] executeInceptionGraph(byte[] graphDef, Tensor<Float> image) {
try (Graph g = new Graph()) {
g.importGraphDef(graphDef);
try (Session s = new Session(g);
Tensor<Float> result =
s.runner().feed("input", image).fetch("output").run().get(0).expect(Float.class)) {
final long[] rshape = result.shape();
if (result.numDimensions() != 2 || rshape[0] != 1) {
throw new RuntimeException(
String.format(
"Expected model to produce a [1 N] shaped tensor where N is the number of labels, instead it produced one with shape %s",
Arrays.toString(rshape)));
}
int nlabels = (int) rshape[1];
return result.copyTo(new float[1][nlabels])[0];
}
}
}
private static int maxIndex(float[] probabilities) {
int best = 0;
for (int i = 1; i < probabilities.length; ++i) {
if (probabilities[i] > probabilities[best]) {
best = i;
}
}
return best;
}
private static byte[] readAllBytesOrExit(Path path) {
try {
return Files.readAllBytes(path);
} catch (IOException e) {
System.err.println("Failed to read [" + path + "]: " + e.getMessage());
System.exit(1);
}
return null;
}
private static List<String> readAllLinesOrExit(Path path) {
try {
return Files.readAllLines(path, Charset.forName("UTF-8"));
} catch (IOException e) {
System.err.println("Failed to read [" + path + "]: " + e.getMessage());
System.exit(0);
}
return null;
}
// In the fullness of time, equivalents of the methods of this class should be auto-generated from
// the OpDefs linked into libtensorflow_jni.so. That would match what is done in other languages
// like Python, C++ and Go.
static class GraphBuilder {
GraphBuilder(Graph g) {
this.g = g;
}
Output<Float> div(Output<Float> x, Output<Float> y) {
return binaryOp("Div", x, y);
}
<T> Output<T> sub(Output<T> x, Output<T> y) {
return binaryOp("Sub", x, y);
}
<T> Output<Float> resizeBilinear(Output<T> images, Output<Integer> size) {
return binaryOp3("ResizeBilinear", images, size);
}
<T> Output<T> expandDims(Output<T> input, Output<Integer> dim) {
return binaryOp3("ExpandDims", input, dim);
}
<T, U> Output<U> cast(Output<T> value, Class<U> type) {
DataType dtype = DataType.fromClass(type);
return g.opBuilder("Cast", "Cast")
.addInput(value)
.setAttr("DstT", dtype)
.build()
.<U>output(0);
}
Output<UInt8> decodeJpeg(Output<String> contents, long channels) {
return g.opBuilder("DecodeJpeg", "DecodeJpeg")
.addInput(contents)
.setAttr("channels", channels)
.build()
.<UInt8>output(0);
}
<T> Output<T> constant(String name, Object value, Class<T> type) {
try (Tensor<T> t = Tensor.<T>create(value, type)) {
return g.opBuilder("Const", name)
.setAttr("dtype", DataType.fromClass(type))
.setAttr("value", t)
.build()
.<T>output(0);
}
}
Output<String> constant(String name, byte[] value) {
return this.constant(name, value, String.class);
}
Output<Integer> constant(String name, int value) {
return this.constant(name, value, Integer.class);
}
Output<Integer> constant(String name, int[] value) {
return this.constant(name, value, Integer.class);
}
Output<Float> constant(String name, float value) {
return this.constant(name, value, Float.class);
}
private <T> Output<T> binaryOp(String type, Output<T> in1, Output<T> in2) {
return g.opBuilder(type, type).addInput(in1).addInput(in2).build().<T>output(0);
}
private <T, U, V> Output<T> binaryOp3(String type, Output<U> in1, Output<V> in2) {
return g.opBuilder(type, type).addInput(in1).addInput(in2).build().<T>output(0);
}
private Graph g;
}
}
您正在使用预测给定图像标签的代码,即将图像从一些经过训练的图像中分类类因此您不知道对象的确切像素。
因此,我建议您执行以下任一操作,
- 使用object detector检测对象的位置并获取边界框。然后得到像素点最多的颜色。
- 使用像 this 这样的像素级分类(分割)来获取对象的精确像素。
请注意,您可能需要为您的对象手动训练网络(或模型)
编辑:
对于 Java 对象检测示例,请查看 this project which is coded for android
, but it should be straightforward to use them in desktop applications. More specifically look into this 部分。
您不需要同时进行对象检测和分割,但如果您愿意,我想首先尝试使用 python(上面提供的 link 训练分割模型) 然后像对象检测模型一样使用 java 中的模型。
编辑 2:
我添加了 simple object detection client in java
which uses Tensorflow Object detection API models 只是为了向您展示您可以在 java 中使用任何冻结模型。
此外,检查这个漂亮的 repository,它使用像素级分割。
您必须先移除背景像素以仅保留您的对象,然后构建包含所有剩余像素的列表,然后计算平均颜色。
关于颜色检测方法,你可以看看Color 图像处理:新兴应用、Color Detection, and most especially How we handle color detection.
使用下面给出 RGB 颜色代码的代码片段,但是由于图像可能包含不同的颜色像素,因此您需要决定一个点(例如:中心)并获得垂直 (Y) 和水平的 RGB 代码(X) 坐标。
//create image object from byte array
BufferedImage imageobj=null;
Color[][] imgcolor=null;
try {
imageobj=ImageIO.read(new ByteArrayInputStream(imageBytes));
} catch (IOException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
if(imageobj!=null){
imgcolor=new Color[imageobj.getWidth()][imageobj.getHeight()];
for(int i=0;i<imageobj.getWidth();i++){
for(int j=0;j<imageobj.getHeight();j++){
imgcolor[i][j]=new Color(imageobj.getRGB(i, j));
}
}
}
if(imgcolor!=null && imgcolor.length>0){
System.out.println("Object Color "+imgcolor[imageobj.getWidth()/2][imageobj.getHeight()/2].toString());
}