熔化一个 pandas DataFrame

Melt a pandas DataFrame

我有一个 pandas DataFrame 这样的:

df = pd.DataFrame({'custid':[1,2,3,4],
...: 'prod1':['jeans','tshirt','jacket','tshirt'],
...: 'prod1_hnode1':[1,2,3,2],
...: 'prod1_hnode2':[6,7,8,7],
...: 'prod2':['tshirt','jeans','jacket','shirt'],
...: 'prod2_hnode1':[2,1,3,4],
...: 'prod2_hnode2':[7,6,8,7]})

In [54]: df
Out[54]: 
    custid   prod1  prod1_hnode1  prod1_hnode2   prod2  prod2_hnode1  \
0       1   jeans             1             6  tshirt             2   
1       2  tshirt             2             7   jeans             1   
2       3  jacket             3             8  jacket             3   
3       4  tshirt             2             7   shirt             4   

   prod2_hnode2  
0             7  
1             6  
2             8  
3             7  

如何将其转换为以下格式:

dfnew = pd.DataFrame({'custid':[1,1,2,2,3,3,4,4],
...: 'prod':['prod1','prod2','prod1','prod2','prod1','prod2','prod1','prod2'],
...: 'rec':['jeans','tshirt','tshirt','jeans','jacket','jacket','tshirt','shirt'],
...: 'hnode1':[1,2,2,1,3,3,2,4],
...: 'hnode2':[6,7,7,6,8,8,7,7]})


In [56]: dfnew
Out[56]: 
   custid  hnode1  hnode2   prod     rec
0       1       1       6  prod1   jeans
1       1       2       7  prod2  tshirt
2       2       2       7  prod1  tshirt
3       2       1       6  prod2   jeans
4       3       3       8  prod1  jacket
5       3       3       8  prod2  jacket
6       4       2       7  prod1  tshirt
7       4       4       7  prod2   shirt

使用:

  • set_index 按列 custid
  • split
  • 在列中创建 MultiIndex
  • 将列中的 NaN 替换为 rec
  • stack一级
  • reset_index 来自 MultiIndex
  • 的列
  • 重命名列

df = df.set_index('custid')
df.columns = df.columns.str.split('_', expand=True)
df = df.rename(columns={np.nan:'rec'})
cols = ['custid','hnode1','hnode2','prod','rec']
df = df.stack(0).reset_index().rename(columns={'level_1':'prod'}).reindex(columns=cols)
print (df)
   custid  hnode1  hnode2   prod     rec
0       1       1       6  prod1   jeans
1       1       2       7  prod2  tshirt
2       2       2       7  prod1  tshirt
3       2       1       6  prod2   jeans
4       3       3       8  prod1  jacket
5       3       3       8  prod2  jacket
6       4       2       7  prod1  tshirt
7       4       4       7  prod2   shirt

这是另一种应该有效的方法,但使用了重复的 melts。

coln = df.dtypes.index  # save some typing
df_long = pd.melt(
    df, id_vars = "custid", value_vars = ["prod1", "prod2"],
    var_name = "prod", value_name = "rec").assign(
    hnode1 = pd.melt(df, id_vars = "custid", 
                     value_vars = filter(lambda x: "hnode1" in x, coln))["value"],
    hnode2 = pd.melt(df, id_vars = "custid", 
                     value_vars = filter(lambda x: "hnode2" in x, coln))["value"])
print(df_long)
   custid   prod     rec  hnode1  hnode2
0       1  prod1   jeans       1       6
1       2  prod1  tshirt       2       7
2       3  prod1  jacket       3       8
3       4  prod1  tshirt       2       7
4       1  prod2  tshirt       2       7
5       2  prod2   jeans       1       6
6       3  prod2  jacket       3       8
7       4  prod2   shirt       4       7

您在评论中提到了 R。 "data.table" 中的 melt 应该能够更轻松地处理这个问题,因为您可以一次融化多组列,类似于您可能如何处理基本 R 的 reshape 函数的问题。

基础 R 方法可能类似于:

reshape(df, direction = "long", idvar = "custid", 
        varying = list(c(2, 5), c(3, 6), c(4, 7)), 
        sep = "", times = c("prod1", "prod2"))