如何在 Python-Fu 中执行与 Gimp 的颜色、自动、白平衡等效的操作?

How do I do the equivalent of Gimp's Colors, Auto, White Balance in Python-Fu?

我能找到的唯一函数是:gimp-color-balance,它采用适用的参数:preserve-lum(osity)、cyan-red、magenta-green 和 yellow-blue.

我不确定要为这些参数传递什么值来复制标题中的菜单选项。

根据我在快速查看源代码(并或多或少通过测试图像确认)后的理解,这些是不相关的并且在幕后,Colors>Auto>White Balance:

  • 获取每个通道的直方图
  • 获取决定底部和顶部 0.6% 的值
  • 使用与 "Levels" 非常相似的内部调用,使用这两个值作为黑点和白点来扩展该通道的值范围。

使用合成图像证明:

之前:

之后:

这一切在 Python 中并不难做到。

K,酷。弄清楚如何编写脚本。
喜欢就用吧。对我来说没问题。

https://github.com/doyousketch2/eAWB

根据GIMP doc,我们需要丢弃红色、绿色和蓝色直方图每一端的像素颜色,这些颜色仅被图像中 0.05% 的像素使用,并尽可能多地拉伸剩余范围尽可能 (Python 代码):

import numpy as np
import cv2  # opencv-python
import matplotlib.pyplot as plt


img = cv2.imread('test.jpg')
x = []
# get histogram for each channel
for i in cv2.split(img):
    hist, bins = np.histogram(i, 256, (0, 256))
    # discard colors at each end of the histogram which are used by only 0.05% 
    tmp = np.where(hist > hist.sum() * 0.0005)[0]
    i_min = tmp.min()
    i_max = tmp.max()
    # stretch hist
    tmp = (i.astype(np.int32) - i_min) / (i_max - i_min) * 255
    tmp = np.clip(tmp, 0, 255)
    x.append(tmp.astype(np.uint8))

# combine image back and show it
s = np.dstack(x)
plt.imshow(s[::,::,::-1])

结果与 GIMP 'Colors -> Auto -> White Balance'

后的结果完全相同

UPD: 我们需要 np.clip() 因为 OpenCVnumpy 不同地将 int32 转换为 uint8:

# Numpy
np.array([-10, 260]).astype(np.uint8)
>>> array([246,   4], dtype=uint8)
# but we need just [0, 255]

为了完成@banderlog013的回答,我认为Gimp Doc指定首先丢弃每个通道的结束像素,然后拉伸剩余范围。我相信正确的代码是:

img = cv2.imread('test.jpg')
balanced_img = np.zeros_like(img) #Initialize final image

for i in range(3): #i stands for the channel index 
    hist, bins = np.histogram(img[..., i].ravel(), 256, (0, 256))
    bmin = np.min(np.where(hist>(hist.sum()*0.0005)))
    bmax = np.max(np.where(hist>(hist.sum()*0.0005)))
    balanced_img[...,i] = np.clip(img[...,i], bmin, bmax)
    balanced_img[...,i] = (balanced_img[...,i]-bmin) / (bmax - bmin) * 255

我用它取得了不错的效果,试试吧!

如何从本质上获得与 GIMP 的 Colors --> Auto --> White Balance 功能等效的功能:

测试于 Ubuntu 20.04.

从我的 eRCaGuy_hello_world repo here: python/auto_white_balance_img.py 下载以下代码。

安装依赖项:

pip3 install opencv-python  # for cv2
pip3 install numpy

现在这里有一些功能齐全的代码,不像这里的其他一些答案是片段并且缺少 import 语句之类的东西。我是从 , and .

借来的

创建文件auto_white_balance_img.py:

#!/usr/bin/python3

import cv2
import numpy as np

file_in = 'test.jpg'

file_in_base = file_in[:-4] # strip file extension
file_in_extension = file_in[-4:]

img = cv2.imread(file_in)

# From @banderlog013's answer: 
x = []
# get histogram for each channel
for i in cv2.split(img):
    hist, bins = np.histogram(i, 256, (0, 256))
    # discard colors at each end of the histogram which are used by only 0.05%
    img_out1 = np.where(hist > hist.sum() * 0.0005)[0]
    i_min = img_out1.min()
    i_max = img_out1.max()
    # stretch hist
    img_out1 = (i.astype(np.int32) - i_min) / (i_max - i_min) * 255
    img_out1 = np.clip(img_out1, 0, 255)
    x.append(img_out1.astype(np.uint8))

# From @Canette Ouverture's answer: 
img_out2 = np.zeros_like(img) # Initialize final image
for channel_index in range(3):
    hist, bins = np.histogram(img[..., channel_index].ravel(), 256, (0, 256))
    bmin = np.min(np.where(hist>(hist.sum()*0.0005)))
    bmax = np.max(np.where(hist>(hist.sum()*0.0005)))
    img_out2[...,channel_index] = np.clip(img[...,channel_index], bmin, bmax)
    img_out2[...,channel_index] = ((img_out2[...,channel_index]-bmin) / 
        (bmax - bmin) * 255)

# Write new files
cv2.imwrite(file_in_base + '_out1' + file_in_extension, img_out1)
cv2.imwrite(file_in_base + '_out2' + file_in_extension, img_out2)

使auto_white_balance_img.py可执行:

chmod +x auto_white_balance_img.py

现在将上面文件中的 file_in 变量设置为您想要的输入图像路径,然后 运行 使用:

python3 auto_white_balance_img.py
# OR
./auto_white_balance_img.py

假设你设置了file_in = 'test.jpg',它会产生这两个文件:

  1. test_out1.jpg # 来自
  2. 的结果
  3. test_out2.jpg # 来自
  4. 的结果

我用这个功能来自动白平衡图像。与 Gimp 函数不同,它不会标准化图像对比度。所以它对低对比度图像也很有用。

import numpy as np
from imageio import imread
import matplotlib.pyplot as plt



def auto_white_balance(im, p=.6):
    '''Stretch each channel histogram to same percentile as mean.'''

    # get mean values
    p0, p1 = np.percentile(im, p), np.percentile(im, 100-p)

    for i in range(3):
        ch = im[:,:,i]
        # get channel values
        pc0, pc1 = np.percentile(ch, p), np.percentile(ch, 100-p)
        # stretch channel to same range as mean
        ch = (p1 - p0) * (ch - pc0) / (pc1 - pc0) + p0
        im[:,:,i] = ch
        
    return im

def test():

    im = imread('imageio:astronaut.png')
    # distort white balance
    im[:,:,0] = im[:,:,0] *.6
    im[:,:,1] = im[:,:,1] *.8

    plt.imshow(im)
    plt.show()

    im2 = auto_white_balance(im)
    im2 = np.clip(im2, 0, 255)  # or 0, 1 for float images

    plt.imshow(im2)
    plt.show()


if __name__ == "__main__":
    test()

如果您想要等效的 Gimp 函数,请改用固定值: p0, p1 = 0, 255