kNN classification using scikit-learn: TypeError: unsupported operand type(s) for /: 'str' and 'int'
kNN classification using scikit-learn: TypeError: unsupported operand type(s) for /: 'str' and 'int'
我正在尝试使用 longitude
和具有 float
的 latitude
来预测属性 area
的名称,其 object
作为其 dtype
] 作为他们的 dtype
。我正在使用 kNN 算法,但出现此错误:TypeError: unsupported operand type(s) for /: 'str' and 'int'
我在使用kNN的过程中对数据类型感到困惑。我能得到任何帮助来理解我在这里做错了什么吗?这是我的代码:
from sklearn.neighbors import KNeighborsClassifier, KNeighborsRegressor
# read csv file
df = pd.read_csv("perfectData.csv")
X = np.array(df.ix[:, 13:])
y = np.array(df['area'])
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=90)
y_train=y_train.ravel()
y_test=y_test.ravel()
knn = KNeighborsRegressor(n_neighbors=3)
# fitting the model
knn.fit(X_train, y_train)
# predict the response
pred = knn.predict(X_test)
print(pred)
只需要删除ravel()
:
df = pd.read_csv("perfectData.csv")
X = np.array(df.ix[:, 13:])
y = np.array(df['area'])
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=42)
knn=KNeighborsClassifier(n_neighbors=3)
knn.fit(X_train,y_train)
prediction=knn.predict(X_test)
我正在尝试使用 longitude
和具有 float
的 latitude
来预测属性 area
的名称,其 object
作为其 dtype
] 作为他们的 dtype
。我正在使用 kNN 算法,但出现此错误:TypeError: unsupported operand type(s) for /: 'str' and 'int'
我在使用kNN的过程中对数据类型感到困惑。我能得到任何帮助来理解我在这里做错了什么吗?这是我的代码:
from sklearn.neighbors import KNeighborsClassifier, KNeighborsRegressor
# read csv file
df = pd.read_csv("perfectData.csv")
X = np.array(df.ix[:, 13:])
y = np.array(df['area'])
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=90)
y_train=y_train.ravel()
y_test=y_test.ravel()
knn = KNeighborsRegressor(n_neighbors=3)
# fitting the model
knn.fit(X_train, y_train)
# predict the response
pred = knn.predict(X_test)
print(pred)
只需要删除ravel()
:
df = pd.read_csv("perfectData.csv")
X = np.array(df.ix[:, 13:])
y = np.array(df['area'])
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=42)
knn=KNeighborsClassifier(n_neighbors=3)
knn.fit(X_train,y_train)
prediction=knn.predict(X_test)